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NUCLEAR DATA AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies in
the field of microscopic nuclear data. The primary objective is the dis-
semination of information in the comprehensive form required for nuclear
technology applications. This Series is devoted to: a) measured microscopic
nuclear parameters, b) experimental techniques and facilities employed in
measurements, c) the analysis, correlation and interpretation of nuclear
data, and d) the evaluation of nuclear data. Contributions to this Series
are reviewed to assure technical competence and, unless otherwise stated,
the contents can be formally referenced. This Series does not supplant
formal journal publication but it does provide the more extensive informa-
tion required for technological applications (e.g., tabulated numerical
data) in a timely manner.
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PREFACE

Many nuclear researchers are reluctant to get involved with covariance
matrices because they perceive the topic as complex and relevant only to the
specialized area of evaluation. This is a misconception which should be
dispelled. Covariance methods are not intrinsically difficult, and the
applications transcend the area of nuclear data evaluation. This report
offers several examples which 1llustrate the potential. More workers in the
field would learn these methods if they recognized some specific applications
to their work. They will not be so motivated if they continue to identify
covariance matrices solely with evaluations. The field of nuclear data
would benefit from a wider understanding of covariance matrices. Covariance
techniques represent an important addition to any data—-analysis repertoire.
Data producers should recognize that they acquire more influence over inter-
pretation and utilization of their results if they report them in ways which
encourage proper treatment of errors and correlations by evaluators. Users of
evaluated results achieve greater objectivity in assessing the sensitivity of
their derived results to the input if they understand the significance of the
error and correlation information which many evaluations provide. There
appears to be a need to make covariance methods more widely accessible, and to
publicize the potential applications throughout the nuclear data community.
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NON~EVALUATION APPLICATIONS FOR COVARIANCE MATRICES®

by

Donald L. Smith
Applied Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

USA

ABSTRACT

The possibilities for application of covariance matrix techni-
ques to a variety of common research problems other than formal data
evaluation are demonstrated by means of several examples. These
examples deal with such matters as fitting spectral data, deriving
uncertainty estimates for results calculated from experimental data,
obtaining the best values for plurally-measured quantities, and
methods for analysis of cross section errors based on properties of
the experiment. The examples deal with realistic situations encoun-
tered in the laboratory, and they are treated in sufficient detail
to enable a careful reader to extrapolate the methods to related
problems.

*This work supported by the U.S. Department of Energy.
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I. INTRODUCTION

One objective of this report is to encourage the reader to learn about
covariance matrices, and to start applying these techniques in dealing with
some common analysis problems in research. The report is directed toward
workers in the field of nuclear data. The content consists of a discussion of
several common topics from this field which are herein addressed using covari-
ance techniques. The reader should not expect to find a comprehensive survey
of all possible applications. However, these examples should provide enough
insight to facilitate extrapolation of the methods to many other specific
applications.

This report was not prepared to be a self-contained working document. It
actually supplements an earlier report [1] which treats the fundamental proce-
dures of covariance analysis as applied to nuclear data research. The earlier
report is referenced extensively in the present document, and the reader will
find it necessary to consider these two works together. The reader will not
find a comprehensive list of references to other work in this report. There
is an extensive literature, and many fine contributions have been made avail-
able by other workers in the field. Those recent works most often examined by
this author in the context of the present investigation were the works of
Mannhart [2], Peele [3] and Schmittroth [4]. However, another objective of the
present report is to remedy a deficiency of Ref. 1, namely a limitation in the
number of realistic examples which are helpful in understanding the basic con-
cepts. Since the objective is to teach, simplicity and clarity are emphasized
at the expense of completeness in both content and reference documentation.

When the reader considers the examples in Section 2, it will be apparent
that several of them involve data "evaluation”. This is unavoidable since
the fitting of data, or selection of "best” values from measured results, is
certainly "evaluation”. The title of this report is an unfortunate simplifi-
cation which is not quite correct from a purist point of view. However, the
term "evaluation™ has come to represent the activity undertaken by specialists
within the field who formally consider reported cross sections and other
nuclear data with the objective of generating a body of recommended numerical
values, and estimated uncertainties, which are intended to be employed uni-
formly in physical and engineering applications by other individuals designated
as “"users”. The present report avoids consideration of this function and
focuses on individual applications of covariance matrices in experimental data
reduction and other related research activities.
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2. SELECTED APPLICATIONS

This section discusses thirteen topics which are likely to be encountered
in nuclear data research. These are not very complicated examples, but they
are generally problems which have been considered in our laboratory. Much of
the analysis was performed using the FORTRAN - IV subroutines described in the
Appendix. The interested reader may wish to study the Appendix as well as the
examples of this section, and incorporate these subroutines into his own
working library of computer programs.

2.1 Calibration of the Neutron Energy Scale for Monoenergetic Neutrons
Produced by an Accelerator

Nearly monoenergetic neutrons can be produced by bombardment of several
light elements with charged particles. By selecting the incident charged-
particle energy to be a specific value, and by observing the neutrons at a
specific angle, one can determine the neutron energy quite well to within the
experimental resolution, which is often defined mainly by the thickness of the
target that is being bombarded by the charged particles. The charged—-particle
energy is generally defined by using magnetic analysis and beam—defining slits.

The situation is somewhat different for total cross section experiments
performed in our laboratory. The apparatus for this experiment utilizes the
charged-particle beam port at zero degrees. Therefore, it 1is not possible to
relate charged-particle energy to the field strength of an analyzing magnet
for a fixed geometry. However, the accelerator voltage can be read using a
digital voltmeter (DVM). This has proved to be a reproducible quantity which
effectively defines the charged-particle beam energy and thus the neutron
energy, indirectly [5].

A procedure for direct calibration of the neutron energy E versus the DVM
reading v is provided by the inherent nature of this experiment. One can per-
form measurements with various transmission samples, where the cross sections
exhibit well-known resonances. The calibration curve can be generated from
data on resonance energy Ej versus DVM reading vi for n points along the curve.

The energy versus DVM is represented by the function F with

E, = F(vi,;) -Z Py vij“1 (i=1,n). (2.1.1)
j=1

Thus

(2.1.2)

tav
a
>
L
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where matrix A 1is given by
i-1 .
A, = v ({1=1,n; =1, m. (2.1.3)

This corresponds to a simple polynomial relationship between E and v. The
DVM, v, is read to the 0.1 scale range (e.g., 32.1). Thus there is uncer-
tainty, E,, which does not exceed 0.05, due to round off. For each of the
calibration points E4, there is a corresponding vi. Bowever, the relatiomnship
is uncertain due to two effects:

(1) The energy Ej of the calibration resonance is uncertain by an
error Egy, as reported in the literature.

(11) The reading of the DVM, v4, corresponding to the resonance Ej,
is uncertain by E,.

The procedure of selecting P to optimize the fit indicated in Eq. (2.1.2),

as described in Ref. 1, assumes that E; is uncertain but not vj. This
dilemma can be avoided for practical purposes by combining both uncertainties
(1) and (ii) into a single uncertainty Egjy in Ey, as embodied by the following
equation:

B2 S EZ + (-2%)3 E 2 (2.1.4)

This is not the only approach to this problem, but it is one which avoids
further computational difficulties and allows for adequate treatment of the
present calibration problem.

Realistically, all these error components are essentially uncorrelated,
e.g., the uncertainty E, in reading DVM is of the same magnitude along the
whole scale, but completely independent for each determination of v. Thus,
the covariance matrix Vg for R is

2 -

Vegy = (2.1.5)

0 144,
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The procedure for solving this problem is described in Section VII, Ref. 1.
The key equations are Eqs. (129) and (130) from this reference. Expressed in
terms of the present variables

7 =l o7l om;! (2.1.6)
P E

> -— - - -

p= vpo AT QVE 1 ) E, (2.1.7)

where "T" designates a transposed matrix and "~1" indicates the inverse of the
given matrix. This solution minimizes the chi-square given by

-1

e o -Zep). (2.1.8)

X2a(E-20p) oF

The error vector Ep and correlation matrix Ep for the solution P is derived
from

1/2
Epi = Vpii 1 =1,n), (2.1.9)
Cpij = Vpij/(Epi Epj) (1,5 = 1,m). (2.1.10)

The result of this calibration procedure is the formula
m
E = F(v,p) = Z Py wAl, (2.1.11)

i=1

which is then used to calculate the neutron energy, E, corresponding to any
DVM reading, v. For a DVM reading, v, what is the uncertainty in the derived
energy, E? According to the formalism of Section III, Ref. 1.

AE2 = (§o§p)ToEpo (8 oﬁp), (2.1.12)

where S is the sensitivity matrix



(BFlapl) 0
S = . : (2.1.13)
0 (3F/3p )
Since
(2F/2p,) = Wt (2.1.14)
Eq. (2.1.12) becomes
m m
2 L+3 -2
AE Z Z v CMJ Epz Epj. (2.1.15)

g=1 j=1

However, this is the uncertainty in E when v is assumed to be precisely known.
This is not the case, since we recognize that v is uncertain by E,, and it is
reasonable to add to the error expressed in Eq. (2.1.15). Then,

m m
2 L+ 3 =2 9Ev2 ¢ 2

AE2 = E Z v szj Epz Epj + G2 EZ, (2.1.16)

=1 j=1
where

m

5 - Z (3 = Dpy 72 (2.1.17)
j=2 '

The correlations introduced by fitting a polynomial calibration curve to the
resonance data play an explicit role in Eq. (2.1.16). Clearly, the wrong error
AE 18 calculated if the errors are assumed uncorrelated (i.e., Cpgj - szj,
the Kronecker delta function) as is often dome in such analyses.

This formalism is powerful enough to permit us to examine an additional
question: "What is the correlation in the errors AEy and AEj for two energies
E; and E; derived from the calibration curve for two values of voltage vy and
Vi respectively?” To solve this problem, one refers to Section IV of Ref. 1.



Then,

>
Ei -E(p’ vi’ v )) (201018)

3

E, = E(p, Vis V). (2.1.19)

3

Define augmented matrices §xi’ §xj and Ex, and the augmented vector ﬁ* as
follows:

" (@E/2p)), 0
T e,
r3 (33/3\! ) ’
S, = 1% (2.1.20)
xk 0 (3E/3vj)k
i (k = 1 or j)
[ © 0
P
C. = 1 R (2.1.21)
X
K 1
£
| r
£ - |fn ] (2.1.22)
Eyq

Since E; does not depend upon vy and Ey does not depend upon vy,

(aE/a"i) = (JE/3v )1 = 0. (2.1.223)

b 3

Use is made in Eq. (2.1.21) of the fact that the errors in vy and vy are
uncorrelated. Now, define the matrix M by



My My
M= , (2.1.23)
i My
where
Mo, = (gxk ° ﬁx)T ° Ex ° (§xz ° Ex). (2.1.24)

(k, £ =1 or j)
Following some algebra, one can conclude that

M, = (aE)2 (k = 1 or j), (2.1.25)

where AEy 1s the value derived from Eq. (2.1.16). Thus, the correlation in

the errors AE1 and AEj, qij’ is

- M /(AEi AE,). (2.1.26)

U3 3 1

Consider the data in Table (2.1.1) as a numerical example. Application of
the formalism described in the present section indicates that the best chi-—
square 18 obtained with a five-parameter fit, and that problems with limited
precision in the computer lead to instability for higher-order fits, as
indicated in Table (2.1.2). The normalized chi-square is the actual chi-gquare
divided by the number of degrees of freedom (n - m for this example). A
normalized chi-square of around unity indicates a fit consistent with the
asgigned errors.

The result for a five-parameter analysis is shown in Fig. (2.1.1). Strong
correlations in the errors for the parameters $ are evident. Negative signs
for elements in Cp imply anti-correlations. Were it not for these anti-
correlations the error AE for E derived from the curve for a given v would be
much larger than the 4-6 keV uncertainty indicated. This is evident from
the role of Cp in Eq. (2.1.16). The reader can investigate the correlations
between errors in energies derived for two different voltages by using the
formalism outline in Eqs. (2.1.18) to (2.1.26).



Table 2.1.1

Resonance Calibration Data

Resonanceb
pn? Energy (MeV) Origin
31.9 0.565 Silicon
35.9 0.813 Silicon
37.6 0.930 Silicon
39.6 1.047 Silicon
42.1 1.205 Silicon
54.4 1.925 Silicon
57.17° 2,078 Carbon
74.25° 3.008 Carbon
98.2 4,220 Silicon
117.4 5.125 Oxygen

8y = DVM, uncertainty % 0.05.

bAssumed uncertainty £ 2 keV for all

resonance energies.

cAwerage of more than one determination
accounts for extra digits beyond meter
scale range.



Table 2.1.2
Normalized Chi-Square vs. Order of Fit

Number of Parameters Used in Fit Normalized Chi-Square

2 316.4

3 4.601

4 1,221

5 1.019

6 309.9 (unstable)a

aA.pparent instability of result is attributed to precision
limitations for the computer used in this analysis.
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Figure 2.1.1:

Calibration of neutron energy vs. accelerator voltage. V =
accelerator voltage, E = neutron energy, EE = uncertainty
in neutron energy. Input calibration point errors are un-
correlated, but errors in values read from derived curve
are correlated from one voltage to another. P = parameters
of fit, EP = errors in P, and CP are correlations for EP.
CHI2 and CHI2NM are the chi-square and normalized chi-
square, respectively.
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2.2 Calibration of a Ge(Li) Detector Energy Scale

Ge(L1i) detectors can be used to measure gamma-ray energies with high
accuracy, but first they must be calibrated. The relationship between pulse
height for a full-energy peak line and the gamma ray energy can be nearly
linear over a moderate range of energies if high-quality electronic components
are utilized in the pulse analysis chain (preamplifier, linear amplifier and
analog-to-digital converter). However, nonlinearities must be taken into
account to realize the full accuracy potential of these detector systems.
Nonlinear effects are especially important for low gamma ray energiles or for
calibration of very wide energy ranges. See Ref. [6] for more details.

Energy scale calibration is most often achieved by utilizing calibratfon
sources which emit one or more gamma rays whose energies are well known. Thus,
one generates a calibration data base consisting of sets of multiplets (x4,
Axy, Eq, AEgi), where x; is the peak channel for a gamma ray of energy Ej in
the recording device. The Axj are the uncertainties in the peak channels while
the AE;y are the given errors in the energies of the calibration lines. The
object of the calibration procedure is to represent the energy E as a function
of x, E(x). A polynomial relation is adequate for applied purposes, so

m

E(;,x) = ij xj_l. (2.2.1)
=1

The fitting problem consists of finding the set of parameters P which
gives the best fit of the polynomial expansion to the given calibration data.
However, before proceeding with the fitting analysis, it is necessary to
examine the input data errors and their correlations.

According to Eq. (2.2.1), this problem treats x as the independent
variable while E is the dependent variable. The error analysis formalism
discussed in this report considers data where the errors in the dependent
variable values (Ey) are included while those for the independent variable
values (xy) are neglected. In the present problem, both E{ and x; are uncer-
tain. This dilema can be resolved for practical purposes by simply adding the
error in x; to the error in E{ according to the formula

2 2 9E,» 2
Eg,2 = AEgi + D% bx 2. (2.2.2)

The partial derivatives, (3E/9x)4, can be estimated apriori from the trend of
the calibration data. The errors AxX4 can be assumed to be uncorrelated, but

it is likely that the errors AEgi are at least partially correlated, if they
correspond to a specific radiocactive source. Thus, e.g., there will be some
correlation between AE,; and AEgy 1f both of these lines are 152g, gamma-decay
lines, but there will be no correlation 1if ome 1line is from 152Eu and the other
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ig from !33Ba. The nature of the correlations would be expected to be different
for each source since the calibration energies are most likely to have originated
from different experiments. Information of this nature is very hard to come by.
So, for this example a model assumption will be made. It will be assumed that
the total errors E_,, and EE are correlated according to a matrix CE defined as

follows: Ei ]
0 if the lines "i" and "j" arise from
two distinct radioactive sources,
CEij = - E (2.2.3)

6Ek2 [1 - iAEk ]/(EEi EEj)’ if the lines

“i* and "3j" arise from the radioactive
source labelled "k".

Here, OFy designates an estimated correlated error component for the source
"k" and AE, is the magnitude of the maximum energy difference for any two
calibration lines in source "k". Thus, the given error AEgi is assumed

to consist of a random component AEpy and the correlated component $Ep so
that

AEgiz - AER12 + szkz. (2.2.4)

The degree of correlation between the errors diminishes according to the
energy separation of the lines, for two lines originating from the same
radioactive source.

_ Once the input xi(;), Eq (E), errors Egy (EE) and correlation matrix
Cg are available, as indicated above, the fitting can proceed according to
the procedures of Section VII, Ref. 1.

Define the matrix A according to

Ay = (E/3p)), = xij-l (1 = 1,n; § = 1,m). (2.2.5)
Then

ExAep, (2.2.6)

T ~GTev len, (2.2.7)
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P=7V e2Teq “lo &, (2.2.8)

where VE is a covariance matrix defined by

v (1,3 = 1,n), (2.2.9)

E1j - “E1j EE1 BEy

and VE'I is its inverse. The best solution to the approximate expression
Eq._(2.2.6), 18 B as given by Eq. (2.2.8). The solution covariance matrix
is Vp, and the solution errors are given by

1/2

E. =V ) (j = 1,m). (2.2.10)

p] Piy

The chi-square and normalized chi-square are:

2=(E-Zep) e VE‘I ot -%e1}, (2.2.11)

(X3) om = ¥2/(n - m). (2.2.12)
The correlation matrix Ep is:

Cpij = vpij/(Epi Epj) (1, = 1,m). (2.2.13)

The solution vector P defines the calibration curve according to Eq.
(2.2.1). Once this curve is established, it is very interesting to find out
what the error would be in the determination of the energy E, of an unknown
line located at Xye The formalism of Section III, Ref. 1 can deal with this
problem. Clearly

m
E = EG, x) = Z p; xuj'l. (2.2.14)
=1

Error in Ey arises from uncertainty in x, and p. The error in x; is un-
correlated to the p errors.
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Define
>
E
P
>
Ey = ,
E
Xu
c 0
P
'éy = .
0 1
[ (3E/3p ) 0
Py .
sy = (3E/3pm)u
0 (3E/ ¥x)

where

m
(3E/3x)u - Z (j - l)pj qu-z ’
=2

(3E/BBj)u = xuj-l (j = 1,m).

Then the equation

2 - +T - - <>
E = (S ®E ®C e (S eE
Eu (y y) y (y y)

gives the desired error in E,.

The input for the specific example to be comnsidered in this section

(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

appears in Table (2.2.1). The indicated gamma ray lines originate from four

sources: Eu-154, Ba-133, Sb-125 and Se-7S.

These data provide the basis
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for a calibration of the energy range 120-900 keV. The channel uncertainties,
Ax, are the dominant source of error in the calibration procedure, based on

Eq. (2.2.2) and the data from Table (2.2.1). The Ax uncertainties are assumed
to be uncorrelated, therefore, the matrix Cg, as defined in Eq. (2.2.3),
exhibits only weak correlations which never exceed a few percent. Nevertheless,
thege correlations are included in the present analysis since inclusion creates
no difficulties.

Figure (2.2.1) provides the results of the fitting analysis for m = 5, yhere
the best chi-square was achieved as indicated in Table (2.2.2). The errors
are strongly correlated, as is often the case in such fitting analyses. This
figure also indicates values of E derived for various x by means of the
formalism described in this section. The errors in the derived energies are
=0.5 keV, and the dominant error source is the uncertainty of *0.5 channel in
locating a peak centroid.



Ge(Li) Detector Energy Calibration Data
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Table 2.2.1

E AEg GEk AEk
Source (keV) (keV) X Ax (keV) (keV) Index
Eu~-154 123.1  0.03 172.7 0.5  0.02 750.1 1
247.9  0.03 301.7 0.5
591.7  0.07 691.0 0.5
723.3  0.04 842.7 0.5
756.7  0.05 881.6 0.5
873.2  0.05 1016.7 0.5
Ba-133 276.3 0.2 332.5 0.5 0.1 107.4 2
302.7 0.2 361.7 0.5
355.9  0.14 421.2 0.5
383.7  0.18 452.6 0.5
Sb-125 176.3  0.03 224.9 0.5  0.02 495.1 3
380.5  0.07 448.8 0.7
427.9  0.03 502.7 0.5
463.4  0.03 543.3 0.5
600.6  0.07 700.7 0.5
606.7  0.07 707.5 0.7
635.9  0.05 741.4 0.5
Y 671.4  0.05 782.3 0.7 Y Y Y
Se-75 135.9 0.1 184.3 0.5  0.05 264.6 4
198.4 0.1 248.5 1.0
264.3 0.1 319.7 0.5
279.2 0.1 335.8 0.5
303.6 0.1 363.3 1.0
400.5 0.1 471.7 0.7
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Table 2.2.2
Normalized Chi-Square vs. Order of Fit

Number of Parameters

Used in Fit Normalized Chi-Square
2 61.68
3 12,77
4 2.484
5 0.8165
6 . 127.3%

aApparent instability of result is attributed to
precision limitations for the computer used in
this analysis.
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2.3 Derivation of a Half Life from Decay Data

Certain problems, by the nature of the parameters involved, can be trans-
formed mathematically into an equivalent problem which can be analyzed using
linear least-squares fitting techniques. Once the solution is obtained for
the transformed problem, one can deduce the best solution for the original
problem, and the errors, by performing an inverse transformation. This sec-
tion presents such a situation as an example. -

One of the experiments performed in this laboratory was a measurement of
the half life for the decay of the isomeric level at 0.396-MeV excitation in
11lcd [7]. A natural Cd sample was irradiated with fast neutrons. The yield
of 245-keV gamma rays originating from 1lmcy decays was measured with a Ge(Li)
detector. The irradiated sample was counted over several half lives in inter-
vals which were short compared to the half life. These data were corrected
for deadtime and finite counting time effects. Errors in the derived activi-
‘ties were estimated from statistics and from a knowledge of other parameters
of the measurement. Random errors were dominant, so the total errors are
treated as essentially uncorrelated. The derived activity data set to be
analyzed consists of a set of n multiplets of values (tj, yj, Eyy), with ty
the time, y; the activity and Eyy the error in yj. the assumed functional
relationship is

Y = Yo et/ (2.3.1)

where T is the mean life. Thus,

Iny = 1n Vs —% ’ (2.3.2)
and so
z = Pl + Pzt, (2.3.3)

if the followiag variable changes are made:

zZz=1ny ,
pp=1lny, (2.3.4)
P, = -1/7.
Now,
3z/3y = 1/y , (2.3.5)

so E,=~E/y , (2.3.6)
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and thus we transform the data set (ty, yy,
Ezi) in order to proceed with the analysis.

z -

{ TP qtP oty (1 =1,n),
or

+> - >

z xAe?p
in vector notation, where

= j—l = M =
Ay =ty (1 =1,n; 3 =1, 2).

K

i) to the equivalent set (ty, zi,
rom Eq. (2.3.3), it is deduced that

(2.3.7)

(2.3.8)

(2.3.9)

Now, the standard equations and methods from Ref. 1 can be applied:

= =T o= =1 oo~
- [ ]
V= (& e, N,

T.V.l.;,
4

p=V oA
P P
and the chi-square is

Xaz-AepTeite@E-iep,

(2.3.10)

(2.3.11)

(2.3.12)

where V, is the covariance matrix derived from the data according to:

2
i

E 2 E 2/y

zi  or “yi 1 =1,

Vag =

0 U #39.

(2.3.13)

Since the error Er in the half life, T, is sought, further analysis is required:

T=1Tln 2 =-1n 2/p2,
- 2
aT/Bp2 1n2/p2 R

- 2
ET (1n Z/PZ) Ep2 ,

1/2
B2 = (Vo)

(2.3.14)

(2.3.15)

(2.3.16)

(2.3.17)
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Numerical values for this example appear in Fig. (2.3.1). The plot
presents the natural logarithm of the decay rate versus time. A linear fit is
made to the transformed data, and the half life is related to the slope of the
fitted line. for this example, the derived half life error is 0.12%; but, this
is too small since the normalized chi-square, CHI2NM in Fig. (2.3.1), is
3.307. Thus, the error should be scaled by the square root of this value
(equal to 1.82) to %0.22%, based on the actual scatter of the data (as dis-
cussed on pp. 33-34 of Ref. 1). Therefore, this experiment yields the value
48,99 %0.11 minutes for the half life of lilmCd, when the data are analyzed
as indicated in the present sectionm.
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Figure 2.3.1: perivation of the halif life for lllmCd from decay

data. T = time in minutes, Y = decay rate at time

T, EY = error in Y. Z and EZ are transformed variables
(see Section 2.3 of text). CZ = correlation matrix
for EZ. P = parameters of fit, EP = errors for P,

CP = correlation matrix for EP. CHI2 and CHI2NM are
the chi-square and normalized chi-square for the fit,
respectively.
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2.4 Derivation of the Relative Efficiency Curve for a Ge(L1) Detector

Calibration of the relative efficiency of a photon detector as a function
of gamma-ray energy is an important step in experiments such as those intended
to measure (n,n'Y) cross sections [6]. Most often, one measures the yield in
the full-energy peak. It has been found that the relationship between effi-
ciency € and photon energy E can be approximated by the formula

Ine = Z P, (1n E)J-1 (2.4.1)
J=1

In order to determine the coefficients ;, the expression Eq. (2.4.1) is fitted
to calibration data. Suppose one uses a series of K radioactive sources, each
having several lines of known relative intensity. The aggregate of these K
sources yields n lines. The normalizations of the various sets of relative
efficiencies are different owing to different source strengths. Assume that
one source is considered as a reference source, and all others are normalized
relative to this one source, thereby eliminating all but one normalization
constant. This procedure could be done, e.g., graphically. One thus obtains
pairs of values

[El(kl), sl(kl)], caes [En(kn)’ sn(kn)], where kl through kn identify the

source k = 1, ..., K. It is then assumed that each efficiency €4 has a total
error Esi which is composed of several components, i.e.,
Ee

2-E€ 2+E ,2+E 2, (2.4.2)

i Ri eSk €Nk

where

E = random error
€R1 ’

EeSk = a shape error characteristic of source k,

EENk = A normalization error which comes from adjusting the "k" source
shape to the reference source data.

For convenience, let k = 1 designate the reference source; therefore, E = 0,

€N1
The energy error is assumed negligible in this analysis.
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Ultimately, we define the correlation matrix C_ for the errors E q as
follows: € €
11f i =3,

2 2
e Spikj Beme * Figk Besi” )/ (BeqBey) (2.4.3)

if 1 # j, and k 1is the common value,
where k, = k, , and &, . is the Kronecker delta.
i°5 kikj

Here, assume that

Ei - E
F =1 - (2.4.4)

’
13k BE,

when the two gamma ray lines with energies Ej and Ej originate from the same
source "k". The interpretation of the correlation matrix C¢ is relatively
simple. First, there is a correlated error Egpk for all lines "i"” and "j" from
the same source, "k", which originates due to normalization of this set to the
reference source. If k = 1 (reference source itself), then the term vanishes.
The second component is modified by the factor Fijk. The purpose of this
factor is to weaken the correlation between two lines from the same source as
the energy separation increases. The shape correlation is assumed to vanish
between the two lines in any set, "k", whose energy difference IEi - Ejl equals
the maximum energy difference, AEg, for the set. This, of course, is strictly
an assumption which can be modified if more specific information on correla-
tions is available.

The experimental calibration data given above cannot be used directly for

a least-squares analysis. The values (E R Ei’ E i) and Ce must be converted
to an equivalent set (ti’ z, Ezi) and Cz where ~

ti = In E1 (1, =1, n), (2.4.5)

z, = 1n €y (1 = 1,n). (2.4.6)

Then, Eq. (2.4.1) becomes

m

2 -Z pjtj-l . (2.4.7)

i=1
Clearly,

Ezi = (Bzi/aei)EEi - Eei/éi (1 =1,n), (2.4.8)
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but conversion of E; to E; is not so obvious.

Utilizing the formalism from Section IV, Ref. 1:

z =2z(€E , veey, € ) =1ln € (1 =1,n),
i 1 n i
0 0
s, = (azi/8612 (i=1,n) , (2.4.9)
0 ‘0

thus the covariance matrix V; is given by

(5, o EE)T eC o (5 oE) (2.4.10)

Vzij € h | €

(1, § =1; n),

and the correlation matrix E; is

C /(E ) (2.4.11)

21§ = Va13/(Ez1Bpy
(i’ 3 =1, n).
Eq. (2.4.10) reduces to the expression

\' /(e €.) (2.4.12)

2ij = Be1BeyCery/ (1%

(i, i-= 1, n).

Based on Eqs. (2.4.8), (2.4.11) and (2.4.12), it is concluded that

Czij = csij (i, j =1, n). (2.4.13)

Define A according to

A, =t 371

13 i (1 =1, n; j =1, m). (2.4.14)
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Then, the standard equations from Section VII, Ref. 1, apply:

+> - >
zx Ae® p, (2.4.15)
A (Afe 7 e »nt, (2.4.16)
b =7 oaleid lel , (2.4.17)
P z
with chi-square given by
2 > - + T - =] > - >
X =(z-Ae®ep) e Vz ® (z - Ae p). (2.4.18)

Once the solution is available, it is necessary to perform an inverse
transformation to find the error in € for a given E, and the correlation in
the efficiency errors at two different energies. According to Section III,
Ref. 1, and neglecting errors in ¢,

zZ = z(E,t), (2.4.19)
- T - -

E2=(5e Ep) oC oo Ep), (2.4.20)
(az/apl) 0

S = .. , (2.4.21)
0 '(az/apm)

j-1
(azlapj) =t (3=1,m) . , (2.4.22)

But, since

z=1lng¢g , (2.4.23)
with
t = 1n E, (2.4.24)
then
z

E ™ e » (2.4.25)
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and
E_= (3/z2) E = ezEz. (2.4.26)

For the errors at two different energies E1 and Ej’ we have

e, = €, B, (2.4.27)
ey = e(3, Ey), (2.4.28)
and
- T - -
M= (5@ ip) oC 05,0 Ep), (2.4.29)

according to the formalism from Section VII, Ref. 1, with

(3e/3p)), 0

s = . , (2.4.30)
0 '(ae/apm)i

(ae/op,)y = £ e . (2.4.31)

Table (2.4.1) provides the numerical values for a specific example. Two
sources, 132Eu and 154gy, provide data which can be used to calibrate a Ge(Li)
detector for relative efficiency over the energy range 250-1600 keV. 152gy ig
treated as the reference source, and the 1S4gy points were adjusted to 1525y
graphically, with an assumed normalization error, Eyxy = 5.0 relative units.

A shape error parameter of 5.0 _relative units is assumed for both 152y and
15S4F,. The correlation matrix C_ (and thus C_) is calculated from these data
according to Eq. (2.4.3), but thfs 23 x 23 mafrix is too large to exhibit here.

Application of the formalism in this Sectiomn leads to the results presented
in Fig. (2.4.1), for m = 2. A three—parameter fit leads to a slightly poorer fit
(larger normalized chi-square), and higher-order fits were unstable due to
computer precision limitatioms. Since the normalized chi-square for m = 2 is
near unity, the solution represented by Fig. (2.4.1) is satisfactory. The for-
malism also permits derivation of the efficiency at an arbitrary energy point
along the curve, and it provides the corresponding uncertainty. The results
for several selected energies also appear in Fig. (2.4.1). From this analysis,
it appears that the relative efficiency can be determined with an uncertainty
of the order of 1-2%, depending upon the energy.
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Table 2.4.1. Ge(Li) Detector Relative Efficiency Data

a

E € EeG ESK ENk AEk
Source (keV) (Rel) (Rel) (Rel) (Rel) (keV) Index
Eu=-152 244.7 1229.0 60.22 5.0 0] 1163.3 1

296.0 974.4 101.3
344,3 856.2 25.69
367.8 832.0 65.72
411.1 817.0 49.02
444,0 696.7 39.71
778.9 411.5 15.64
867.3 400.1 18.80
964.0 348.7 13.95
1088.0 304.8 14.33
1112.0 311.2 12.45
Y 1408.0 244.4 9.78 Y
Eu-154 248.0 1185.0 42.64 5.0 5.0 1349.0 2
444,4 743.6 55.77
591.7 513.0 27.71
692.4 497.7 21.90
723.3 443.3 12.41
756.9 433.6 15.60
873.2 384.7 13.85
1000.0 336.8 9.43

1274.0 263.4 5.27
1495.0 249.2 14.21
 J 1597.0 24].1 8.68 v |

aEeGiz = EeRiZ + EeSkz as defined in text of Section 2.4.
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2.5 Normalization of a Relative Efficiency Curve for a Ge(Li) Detector

Section 2.4 deals with generation of a relative efficiency curve for a
Ge(Li) detector. Often, however, one is required to know the absolute effi-
ciency of the detector in a particular experimental configuration. One way to
obtain such a calibration is to normalize the relative efficiency curve at a
single energy by means of measurements performed using an absolutely-calibrated

gamma-ray source [6].

Let €, be the absolute efficiency at energy E,, with Eco the uncertainty.
Let €g be the relative efficiency, given by

m
ex (;, E) = exp [Z P4 (2n E)j-ll. (2.5.1)
=1

Then the absolute efficiency e at energy E, based on normalization at energy
Ey, 18

€5 (s €, Eps E) =g ep (B,E)/eg (B,E,). (2.5.2)

Generation of the covariance matrix for a set of derived efficiencies at n
energies E; (q = 1,n), is a problem in error propagation which follows the
formalism of Section IV, Ref. 1. Define ﬁx as

- , (2.5.3)

C = . (2.5.4)

Also, define a sensitivity matrix §x by
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(3eA/3pl). 0

S = . (3eA/3pm) . (2.5.5)
(3¢, /3¢ )

Sy depends upon the energy, E. Based on Eqs. (2.5.1) and (2.5.2), the
partial derivatives indicated in Eq. (2.5.5) are:

(3e,/3p,) = €, [(%a B)¥!  (4n Eo)“"_‘l (k = 1,m), (2.5.6)

(aeA/aeo) - eA/eo. ' (2.5.7)

s

Given a specific set of energies El,...,Eq,...,En, one can derive absolute
efficiencies €Alseees eAq,..., €An+ The covariance matrix Vep for these
derived results can then be calculated from the formula

- -> T - - >
VEAqr - (qu L Ex) L Cx 4 (er 4 Ex) (q,r = I,n), (2.5.8)

where §xq and §xr correspond to_§x from Eq. (2.5.5), evaluated at energies
Eq and E,, respectively. From Vea, one can calculate the error EcA in the

derived efficiencies and the correlation matrix EeA according to the formulas:

E - (V 1/2

€Aq )

€Aqq (q = 1,n), (2.5.9)

CsAqr - VeAqr/(EeAq EeAr) (q,r = 1,n). (2.5.10)

The relative efficiency curve R derived in Section 2.4 will serve for use in

4 numerical example. The absolute efficiency for a true co-axial Ge(Li) detec—
tor was measured in a geometry which placed it at a distance ~142 cm from the
origin of radiation. A calibrated U.S. National Bureau of Standards point
source of 22Na was used. The calibration energy was E, = 1275 keV, and the
value €, = 8,200 x 10-% (¥1.9%) was obtained for this configuration. This 1s

a full-energy-peak efficlency, inclusive of solid angle. The error of 1.9%
consists of a 1.5% error in source strength calibration, and an error of 1.2%
in the calibration measurement, combined in quadrature.
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Figure (2.5.1) summarizes the results of an error propagation calculation
based upon the methods described in this section. Absolute efficiencies were
calculated at eight gamma-ray energies in the range 200-1600 keV. The errors
in these derived quantities range from 1.9 - 3.8%. The absolute errors are
smallest near the normalization energy E; = 1275 keV and largest at the
200 -~ keV point, which is the most remote in energy. The correlation pattern
reflected in the 8 x 8 matrix CF is consistent with expectations. Correla-
tions are strong (> 97%) for adjacent energy points, but they diminish to ~30%
for the two points having the largest energy separation.

The errors in these derived efficiencies need not be adjusted since it
was observed in Section 2.4 that the solution parameter set P for the
relative efficiency curve yielded a normalized chi-square of nearly unity.



PscP

12U5E U2

-,YUZUE U0

1121z ULu
e173%E~ul

CP
V1 U0 UE
-,94944E (00

01.,9%449c uUd

.lUIlut )1

EU,FULEFD
v1274E 04
Esb sl

so02nNue=ub

W1-bbic=-Ub

«2000E 03
+4UUUE 03
«O0VUUE 03

s 4357E=-14
1e331k-~004

102%=05
W& 156R -0
s 8573826006

+OJUUE US
+1U0UE 04
1200€ 04

s1248E=u4
Jlt2ubk=C4
QE’O‘)bt"U’)

v 22/ TE=1b
W1985E-06
v1647:=06

« 180U U4
+16U0E 04
CF

ARSI
yho077E=ud

11436E-06
1296k =06

w1JUUE U1
77528 0O
WFU72E 00

YAV
Jdte Ul

.977.‘”: VRS

09(172f: vu
v 37781 VU
'li'UU(—- ul -

.8050E
«Y168E
9799k

FRV]
vy
o

, 6725t 00
v3273L 00
W 9267 0O

5545k
»7249E
8532k

nn
vy
o

4522E
v 6210E
v7715E

¢o
00
00

13217
YAV
6902k

uoUE U0
.C-f)ZDE 00
«O245E U0

L9363 Lo
Jhe /9t ul
.7?4(/[__ UL)

3759 Y
W67k JU
e B8k Ll

.J0G0E
L9830E
.9401E

71
U
Ju

, 9830t 00
J1l000E 01
91867 00

. 9401k
W9867E
«1000E

J0
iy
01

«BEZIE
«I541E
«9901E

00
00
00

L,B207E
W9116E
W FERSE

, 33228 U0
ed2l/k 00

.01t Ul
05252C fird

/7158 U
WvAd(02e 01

,83¢9t
JUEUTE

Ju
Uu

, 9541t 00
9116 00

v 9901E
' 9663E

aao
00

+1000E
W9929E

01
0o

Figure 2.5.1: Absolute efficiencies and corresponding covariance matrix for

a Ge(L1) detector. P and EP are the relative efficiency curve
parameters and errors, respectively, while CP is the correlation
matrix for these parameters (see Section 2.4). EO, FO and EFQ

are the normalization point energy, absolute efficilency and error
in the absolute efficiency, respectively. E, F and EF are the
energy, derived efficiency and error in the derived efficiency,
respectively, calculated at several energiles. CF is the corres-
ponding correlation matrix for these derived results.

9920k
LU0k

0y

1y
Ju

nn_
T

un
N1l
(LD 1

—EE_



-34-

2.6. Background Subtraction for a Spectrum

An isolated gamma-ray line in a Ge(Li) detector spectrum will often
appear as shown in Fig. (2.6.1). Characteristically, there will be a rather
distinct peak, which can be identified as the full-energy, single-escape or
double~escape peak, superimposed upon a slowly varying distribution resulting
from Compton events and general background. The peak yield minus background
is sought. One possible procedure is to fit a smooth curve (usually a poly-
nomial) to the distribution on each side of the peak, e.g., regions (i), 1))
and (i3, 14) indicated in Fig. (2.6.1). The underlying distribution in the
region of the peak, i.e., (ip, 1ip) indicated in Fig. (2.6.1), is estimated by
interpolation via the fitted polynomial.

Let

i = specific channel in the spectrum,
Ny = channel count,

and define a polynomial function F to represent the background distribution
according to

j-1 .
F(x) = E Py X , . (2.6.1)

i=1

where

x = floating point number representing channel number treated as a
continuous variable,

E = vector of polynomial expansion coefficients Pls s« Pp-

If x4 is a floating point number equivalent to integer channel i, then we can
define two sets of quantities 2 (zl, N zn) and ¥ (yl, ooy yn) as follows:

21 %%y ¥yt Ny

N )

S X452 0 Yio-q141 T Vo2

Zz
12-11+1
2-1 (2.6.2)

= N

Zi2-11+2 " %33 0 Yio-4142 i3
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.’
We seek a parameter set p such that

y, % F(z) = 2{: Py zkj'l. (2.6.3)
j=1

Define matrix A such that the elements are

Ay zkj-l (k=1,nand j =1, m). (2.6.4)

Then, Eq. (2.6.3) assumes the form

> - >
yTA®p (2.6.5)
which 1s equivalent to Eq. (113) in Ref. 1.

The procedures in Section VII of Ref. 1 can be applied to find the best-
fit array $, provided that we introduce a covariance matrix for ¥. It is
reasonable to assume that the uncertainty in the channel counts of a spectrum
is largely statistical and that the channel-to-channel correlations can be
neglected. Thus, an error vector E_ (E ., ..., E_) is generated from the
formula y yl yn

1/2 (

E k=1, .c., n), (2.6.6)

vk - Tk

and the correlation matrix E} is given by

Cyij = Gij (Kronecker delta) (2.6.7)

(1,j = 1,n).

The covariance matrix V& is given by

Vyij = Cyij Eyi Eyj (2.6.8)

(i,_'] - l,n)’
according to Eq. (34) of Ref. 1.

The solution to the problem follows readily from the procedures described
in Section VII of Ref. 1:

= T o = -1

V = (A oV 0t
P y

® A", (2.6.9)
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> - >
p = vp ® A e vy oy , (2.6.10)

with the chi-square given by

X2 =G -KoepTe Vy_l e F-%e3) . (2.6.11)
This procedure yields the

is really sought is the net

The peak yield S is given by

<+
parameters p and their covariance matrix. What
peak yield, minus background, and its uncertainty.

iy

S = }; [N, = F(x,)]

£

i
= i [N, —i; prij_l] ~ (2.6.12)
=% =

N = Z N, | (2.6.13)

bj - inj-l (3 =1,m) . (2.6.14)

The error in N is

By = w2 (2.6.15)
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’
and it 18 not correlated with the parameter errors E,. The procedures in
Section III of Ref. 1 can be used to show that the error in S can be derived
from the formula

m m
2 2
E = E + C b.b.E ,E .. 2.6.16
s = En Z}:puijpim ( )
im] j=1

— + *> >
C. is the error correlation matrix for p and Ep is the error vector for p.
Tgese can be derived from the solution covariance matrix Vpaccording to

E )l/2 (i=1,m), (2.6.17)

pi = (vpii

Cpij = vpij/(EpiEpj) (1,j=1,m). (2.6.18)

The coefficients by are diagonal elements of a sensitivity matrix which has
all zero off-diagonal elements.

The spectrum shown in Fig. (2.6.1) was analyzed using this formalism.
Numerical results appear in Fig. (2.6.2). The background was fitted with a
straight line (m = 2). The polynomial coefficient errors are quite large:
p1(¥13.2%), pp (¥73.2%). These errors are anti-correlated to a high
degree (83.4%). The normalized chi-square,

(x®)porm = X3/(n-m), ©(2.6.19)

is 2.97 which implies that the scatter of points in the spectrum exceeds
statistical expectations and therefore there is »90% chance of encountering

p] or pp outside errors. The net peak yield minus background is 614.9 counts
with error *4.9%. The statistical error in the total counts N for the region
is the dominant factor. If correlations in the errors for the solution vector
3 are ignored (as is usually the practice), the calculated error Eg, is

+6.1% which is noticeably larger than the result based on consideration of
covariances.

Since the normalized chi-square for this problem is considerably larger
than unity, one might consider scaling the solution covariance V, by this
factor, as discussed in Ref. 1, pp. 33-34., Eq. (2.6.16) would then be modified
accordingly to read

m m
< Sy

(ESZ)Adjusted = EN2 + ?;:57 , cpijbibjEpiEpj (2.6.20)
i=1 j=1

The result for the present problem would be an increase in the error for §
from *4.9% to *5.6%.
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Figure 2.6.1: Plot of spectrum from the problem presented in
Section 2.6. Solid curve is the fitted back-
ground. Peak yield consists of the total counts
between the channels indexed by "2" and " "
minus the interpolated background represented
by the curve drawn through this region.
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2.7 Simultaneous Fitting of Two Peaks in a Spectrum

Consider the problem where two peaks in a spectrum are partially resolved,
€.g., examine the 996~ and 1005- keV full-energy peaks in a Ge(Li) detector
spectrum of 1S%Ey decay gamma rays. Although more complex peak shapes are
often used for such fittings, simple Gaussion shapes will be used in the
present analysis.

The input data consist of n points yj, corresponding to background
corrected channel counts. Assume a constant background B with error Eg. Then

2 . 2 =
Eyi Ni + EB (1 = 1,n),

where N;y is the raw channel count, subject only to uncorrelated statistical
errors, and Eyy is the total error in ¥i. The background error Eg is 100%
correlated through all the data points, so the covariance matrix Vy 1s given
by

E2  (1#3)

Ey® =)
Vyig = (i,3=1,n), (2.7.2)
B

according to the discussion in Section III, Ref. 1.

A function F of variables x and P is used to fit the data, so
yg ¥ F(xg, B) (4 = 1,0), (2.7.3)

where xi 1s the channel corresponding to y; and § is the parameter vector to
be optimized by the fitting procedure. In the present example,

- 2 - 2 2 - 2
F(x,p) = P, e Py (x = pg)? P, e P5 (x - pg) (2.7.4)

is assumed, so P is a vector of dimension m = 6. Clearly F is nonlinear in
most of its parameters, so linear least-squares analysis is not directly
applicable. One approach is to select an initial-guess vector Po» linearize
the problem by performing a Taylor's series expansion, solve this linear
problem by linear least squares, then iterate the procedure as often as is
needed to converge toward a final solution $ which is acceptable. The pro-~
cedure is described in Section IX of Ref. 1 and also in the present Appendix.
The fundamentals will be outlined in this section as well,for the convenience
of the reader. While there is no guarantee that this procedure always con-
verges toward a reasonable solution, it is rather likely that it will in many
cases, provided that the initial guess vector P, 1s physically reasonable and
not too violently different from the expected final solution P, and that F is
a physically valid approximation.
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1f ;, z and A are defined by

+> > > .

8 =P ~ Py (2.7.5)

z, =Yy~ F(xi,;o) (1 = 1,0), (2.7.6)
oF * :

Ay ™ 335“1’Po) (1 = 1,0; § = 1,m), (2.7.6a)

then the important formulas involved in deriving the solution are, the
initial chi-square,

X, z oV °z, (2.7.7)
with

7 = (ale v el (2.7.8)

P y

L d - —T - - ->

s =V, oA eV l oz, (2.7.9)

> + >

p=p,+8, (2.7.10)

EY
z, = vy F(xi,p), (2.7.11)

and the solution chi-square,

x2 =27 o v, ez _ (2.7.12)

The quantities ;, Vp, ; and X2 correspond to the first-pass solution.
Iteration proceeds until convergence igs achieved. Omne possible convergence
criterion is to look for X2 convergence, e.g., the solution is assumed to be
reached when the fractional change in X2 falls below some small number § for
the previous iteration. This is the approach discussed in the Appendix.

In this problem, the partial derivatives of F are

2 - 2
3F (x,3) = e P2 X 7 P3)

?51 ’ (2.7013)
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~p 2 - 2
3F (x,p) = -2p p,(x - py)? e P2 LY (2.7.14)
’ L] Ld

2 2
- 200 _ P,(x - p,)
3F (x,p) = 2p,p,%(x - p,) P2 S (2.7.15)

2 - 2
3F (x,p) = ePs5 (X = pg) (2.7.16)

> 2(x ~ p )2
3F (x,p) = -2p,p (x - Pg)? e Fs x = »g) , (2.7.17)

-y 2 - 2
3F (x,p) = 2p,p.2(x - pg) e P5 X " Pg) (2.7.18)
ap . L .
6

For this example, a background B of 85 counts with an error of *3 counts
was estimated from the spectral data. Fig. (2.7.1) presents the important
parameters of the problem. The first-guess parameters, ﬁo, correspond to a
chi-square of 6995.0, a very large value. The first iteration reduced chi-
square to 885.5, still quite large. The second iteration reduced chi-square
even further to 177.1. This corresponds to a normalized chi-square of 8.855,
since the number of degrees of freedom is 20 for this problem (26 points, 6
parameters). When a third iteration was attempted, there was a serious
divergence of the analysis into a region of parameter space P which is non-
physical for this problem, and the resultant chi-square was enormous. There-~
fore, iteration was terminated at the second step, which produced the values
given in Fig. (2.7.1) and yields the plot in Fig. (2.7.2).

From Fig. (2.7.2), it is clear that the two peaks are nearly resolved, and
therefore the methods of Section 2.6 would probably be more applicable to the
problem of determining the peak yield. Furthermore, the final normalized chi-
square of 8.855 indicates, most likely, that the double-Gaussian spectrum
shape assumed for the analysis was not very satisfactory. However, this
example does offer some insight into role of covariances in such problems.
Since the normalized chi-square 1s considerably larger than the value of about
unity which one would expect from a good fit, one could scale the solution
covariance matrix according to the rule

(Vp)adjusced - (Vp) X2/(n-m), (2.7.19)
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as discussed on pp. 33-34 of Ref. 1. For this example, this would imply
multiplying all parameter errors by about 3. The correlation matrix Cp in
Fig. (2.7.1) indicates that the errors for the width and height parameters of
each individual Gaussian component are strongly correlated. The errors due

to the peak centroids are small and are uncorrelated. Furthermore, since the
two peaks are nearly resolved in this example, the errors in the parameter
triplets for the two different Gaussian components are very weakly correlated.

The problem of divergence during the iteration procedure requires further
comment. First, when the function F is not an entirely satisfactory approxi-
mation to the data, one cannot expect small chi-square values to result from
the fitting exercise, and ome must be on the lookout for possible divergence.
Then, the occurrence of divergencies may depend strongly upon the precision of
the computer used in the analysis. Sudden, inexplicable divergence such was
encountered in the present example can often be traced to limited computer
precision.
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Peak 1 Peak 2

=, .

Figure 2.7.2:

Plot of spectrum and double-Gaussian fit resulting from
the analysis described in Section 2.7. The quality of the
fit is not too satisfactory as is indicated by the final
normalized chi-square value of 8.9 indicated in Figure
2.7.1. Probably, the peak shapes are not true Gaussians.
Since the peak overlap is small in this instance, a better
estimation of the peak yields would most likely be obtained
if the background subtracted counts were simply summed

over the indicated limits.
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2.8 Uncertainty Estimation for Integrals of Fitted Peak Shapes

Section 2.7 dealt with the problem of fitting two close spectral peaks
simultaneously with Gaussion functions. _That analysis yielded a best-fit set
of parameters P and a covariance matrix Vp, or alternatively, an error vector

P and correlation matrix Cp for these errors.

The usefulness of information provided by fitting with a covariance
formalism will be seen in the present example. Here, the errors in the two
peak areas will be examined and the effect of correlations on these errors
and on the error in the ratio of the peak areas will be considered. The
methodology is from Sections III and IV of Ref. 1, and involves error pro-
pagation with the covariance formalism.

It follows from Section 2,7 that the areas aj and aj for the two
Gaussian peaks are given by the expressions,

2 2
) = “P,° (x = pj)
a,(®) = p, f P2 ¥ ax a2y (2.8.1)
2 2
>y P (x=-p)
a,(p) = p, .}r e S 6" 4x = g1/2 p,/Ps, (2.8.2)

as derived from tables of definite integrals. The ratio R in the areas is
given by

R(B) = a,(3)/a,(3) = b, p,/(p, Ps)- (2.8.3)

The error E, for R can be derived easily using Eq. (32) from Ref. 1,
expressed in terms of the present variables as

2.(5e EP)T eC e (Setl). (2.8.4)

E
R p p

S is a sensitivity matrix given explicitly as
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(3R/3p6)

(2.8.5)

The partial derivatives are evident from Eq. (2.8.3):

(3R/3p1) - -R/p1 R

(3R/ap3) = 0,

The areas a} and ap form a vector A.
derived using the vector error formalism from Section IV, Ref. 1.

- T
Vagj = (5, ¢ Ep)
1/2
Eai = (Vaii)
(aailapl)
Si =
0

(3R/ap4) = R/p4 ,
(aR/aps) = —R/p5 s

® Cp [ (Sj ® Ep)
(1= 1,2):
0
(1 = 1,2).
(aai/8p6)

(2.8.6)

The covariance Va for 3 can be

Thus,

(1,3 = 1,2), (2.8.7)

(2.8.7a)

' (2.8.8)

The errors E;; and E; in the peak areas are correlated according to the

coefficient

Car2 = Va12/(Eq;

E

aZ)'

(2.8.9)

The fit of two Gaussian peaks to the spectral data in the example of

Section 2.7 was of marginal quality.
square of 8.855 (Fig. 2.7.1).

Thus, the error vector E

This was indicaqu by a normalized chi-

and R, as derived in

the present section, should probably be scaled by a factor of about 3 to
reflect the increased uncertainty represented by a normalized chi-square which

exceeds unity.
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Based on the data from Fig. (2.7.1), one obtains the results shown in
Table (2.8.1) from an application of the present formalism. Inclusion of
correlations for the parameter errors Ep (Section 2.7) reduces the errors in
both aj and a3. Since the two peaks are nearly resolved, the off-diagonal
correlation coefficient, C5)2, for the areas is only 0.09. Therefore, the
error in the area ratio, R, is essentially that error which would be obtained
by combining the errors in a] and a3 in quadrature (uncorrelated).

If one sums the background-subtracted channel counts between limits shown
in Fig. (2.7.2), one obtains the values 3193.0 (%2.3%) and 4942 (*1.7%) for
yields of peaks 1 and 2, respectively. This error analysis assumes statistical
uncertainty and an uncorrelated background error. These yields differ from
the corresponding values, aj and ap in Table (2.8.1), by 7.0% and 7.7%,
respectively. Since these differences exceed even the rescaled errors in
Table (2.8.1), the contention stated in Fig. (2.7.2), that the best way to
derive the peak yields for this example is simply to sum the background-
subtracted counts, seems to be substantiated by the analysis presented in the
present section. Peak fitting to obtain area estimates is a valid approach
when the fitting functions represent the data well, or when the peaks cannot
be resolved by any other method.
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Table 2.8.1

Peak Areas, Ratios and Corresponding Errors for Fitted Gaussians

Correlations included:?

a = 2985.0 (£ 1.9%2) [+ 5.7%]
a, = 4589.0 (£ 1.32) [t 3.9%]
R = 1,537 (x 2.22) [t 6.62]

Correlations ignoted:a

a, = 2985.0 (x 32) [+ 9%])
a, = 4589.0 (x 2%) [t 6]
R = 1.537 (£ 2.3%) [+ 6.9]
a

(...) Errors derived from formalism

[...] Errors rescaled by normalized chi-square
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2.9 Cross Section Error Resulting from Uncertainty in Neutron Energy Scale

Very few meetings of neutron data specialists seem to pass by without
some discussion of the matter of energy scale uncertainty and the implications
for the measurement of cross sections and other nuclear parameters. The
controversy seems especially acute between experimenters who perform measure-
ments at white-source facilities and those who perform measurements at
monoenergetic-neutron facilities. Indeed, over the years there have evolved a
number of puzzling discrepancies which have not been resolved. It seems like
the resolution of these problems is perennially beyond the grasp of those
involved [8]. There are probably three basic reasons why this 1is so:

i. The complexities of nature: Cross sections fluctuate violently
with energy over portions of the energy scale and periodic table -~
seemingly beyond current ability to deal with the effects.

ii. Experimenters do not completely understand their experiments: A
detalled understanding of all aspects of a complex modern experiment
and maintenance of control over all the relevant parameters may
exceed practical limitations - mostly those dictated by available
time.

i{i. Data is rarely analyzed according to procedures which properly
handle uncertainty propagation: Although the tools exist to per-
form these operations, they are rarely used. There are, of course,
practical limitations to this just as there are for monitoring the
experimental parameters during the data-taking phase of an experi-
ment.

In this section, the propagation of uncertainties in certain parameters
which affect neutron-energy scale for a monoenergetic experiment will be
examined using covariance formalism. The impact upon derived cross sections
will also be discussed.

Consider the 7Li(p,n)7Be reaction as a monoenergetic neutron source
(reaction Q-value 1s - 1.6444 MeV) [9]. the relationship between proton
energy E and momentum p is

p? = E? + M E, (2.9.1)

where Ml is the rest-mass energy of the proton,

Ml = 931,478 A1 MeV, (2.9.2)

with A, = 1.0078 amu. Even for the few-MeV energy range, relativistic
effects are important and their neglect can lead to errors of several keV.
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Measurement of primary proton momentum is8 achieved by deflecting these
protons in a uniform static magnetic field. Thus

p=kRH, (2.9.3)

where k is constant, R is the radius of curvature and H is the reading from a
magnetic field probe (e.g., Nuclear Magnetic Resonance or Hall-Effect device).
One source of error, and a random one at that, is uncertainty in R related to
finite beam—slit apertures, Thus,

4p = k H 4R, (2.9.4)
(8p/p) = (AR/R) = N, (2.9.5)
Ap = N p, (2.9.6)

The error in the momentum introduced by wandering of the beam across the
beam-slit gap is proportional to the momentum.

Ideally, one should perform the calibration implied by Eq. (2.9.3)-to
determine the constant (kR)-using narrow slits. Assume that this is the case
so that the effects of uncertainty in the radius of curvature are suppressed
during the calibration procedure. Then, assume

p= b1 + bZH' (2.9.7)

Here by is interpreted as (kR) while b is a zero-point correction to
account for instrumental effects and residual magnetism in the analyzing
magnet. The object of calibration is to derive the best values for b; and
bzo

Three calibration points are readily accessible to e§perimenteff. These
are gge threshold points for neutron production from the 'Li(p,n), B(p,n)
and “"Al(p,n) reactions [9,10]. The calibration data consists of three proton
energies Ei(i=1,3) and three corresponding probe readings Hy(i=1,3). There
are errors 6Ei(i = 1,3) and 6Hi(i-l,3). The errors 5Ei are likely to be
nearly random since threshold data from the literature comes from several
origins. The errors GHi are related to reproducibility and are thus random.
The formalism from Ref. 1 assumes that all error is consolidated in the depen-
dent variable, the energy E in this problem, thus

Ag 2 2.

i (2.9.8)

~ 6g2 3g/9g) 2

E,~ + (PE/9H) " sH,
The partial derivatives(aE/aﬂ)i can be estimated readily from the trend of
the calibration data. The formalism requires transformation to the momentum
variable p via Eq. (2.9.1) and

Ap1 = (zi + ul) AEilpi (1 =1,3). (2.9.9)

*> -
The Py form a vector p, and the covariance matrix Vp is given by
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0 (] #1) )
v = (1,j=1,3), (2.9.10
S PYERCERS

since the errors are assumed dndependent as discussed above. The standard
formulas from Ref. 1 become

T m B e T T em, (2.9.11)
= Gb ° KT oV -1 * 3, (2.9.12)
P
R=G-20157Te ap-l. G -Zeb), (2.9.13)
A =1,
11 (1 =1,3), (2.9.14)
Ajp = By

where b represents the best fit parameters b, and b, from Eq. (2.9.7),
Vb is the covariance matrix and X2 tests the goodness of fit.

Now, select Q points with the correspondence:

Probe Proton Energy Neutron Energy Cross Section

Hq > Eq > Enq + 9% (¢ = 1,Q).

At this point of the analysis, it is necessary to describe further the
problem under consideration. Neutrons are produced by bombarding a thin film
of lithium, and only the zero~degree neutrons will be considered. At a proton
energy E = 1.881 MeV corresponding to the 7Li(p,n) threshold, the loss of
proton energy in the target is To maximum. An error Er, arises because
of uncertainty in the thickness of the target. This error is uncorrelated to
other errors considered in this example. At an arbitrary proton energy E, the
effective target thickness T is described reasonably well by the expression.

T » To exp (0.507 - 0.798 gn (Emax))’ (2.9.15)

where Ep . 1s the incident proton energy before the beam enters the lithium
target. So, given Hq, one derives the median proton energy Eq according to
the formulas
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(pmax)q =- bl + b2 Hy, (2.9.16)
(amax)qz - (pmax)qZ - 2M1(Emax)q, (2.9.17)
Tq = To exp {0.507 - 0.798 ¢n [(Emax)q] , (2.9.18)
Eq» (B )q - 1/2 Tq. (2.9.19)

The median proton energy Eq leads to a distinct median zero-degree neutron
energy Epq. This neutron energy can be derived readily using standard kinematic
formulas 2or two-body collisions, which the reader can obtain elsewhere. It

1s assumed that the cross section excitation function o(E,) is known. There-
fore, given Enq’ one can derive the cross section value oq = o(Enq).

At this point, all the information required to propagate errors from input
parameters through to the energy scale and cross section is available. First,
consider X2. If X2 =~ 1, then the errors in bj’ Ebj’ are

12 a1, | (2.9.20)

Epy = (Ypiq?

and the correlation matrix is Eb» given by

cbij = Vbij/EbiEbj) (1,3 = 1,2). (2.9.21)

However, 1if X2 >> 1, then the covariance matrix should be scaled by multiplying
by X2, thereby increasing the errors Eb' Now , define:
_ Cb 0
Cx = , (2.9.22)
0 1

. (2.9.23)

The covariance matrix VE for the derived neutron energies Enq is given in terms
of its elements by

(gxq ° EX)T ° Ex ° (§xr . Ex) (r # q)

Vegr = | Geq @ B 0T 0 G 0 ) (2.9.24)

2..2p 2 -
+ (aEn/ap)q NPy . (r = q),

(r,q=1,Q),
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The matrices §x and §xr (q,r = 1,Q) are the sensitivity matrices
(sometimes called design matrices) for this problem. The form is
(aEn/abl)q 0]
= (aEn/abz)q (2.9.25)
(aEn/aTo)q

Xq

The momentum term appears only in the diagonal elements because the
energy scale error introduced by the wandering of the proton beam across the
beam slit gap is random in nature. The errors in the derived neutron energies
and the error correlation matrix are given by:

)1/2

E = (V (q - l’Q)’ (2.9.26)

Eq Eqq

CEqr = vKr/(EEq EEr) (r,q = 1,Q). (2.9.27)

The major task in this analysis is calculation of the partial derivatives
(3E,/3by) g, (3E,/Ty)q and (3Ey/35)q. This can be done numerically using
Egqs. (2.9.15) - (2.9.19) and the procedure described in the paragraph con-
taining these equations.

Likewise, the cross section covariance matrix Go can be obtained from

- T - - & .

(Syq ° Ex) ° Cx ° (syr ° Ex) (r £ q),

(3. o£)TeC o (5 ot (2.9.28)
Vqu = ¥q | x x yq X 7

30y2 2.2 (r = q),
* Pl P
(r)q = l,Q),
with
) (ao/abl)q 0
Syq - (30/3b2)q (2.9.29)
0 (30/8To)q

(q = 1,Q) .
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The cross section errors and correlation matrix are:

)1/2 (2.9.30)

= (V (Q" I’Q)’

E
gq oqq

Coqr = chr/(EOq Eor) (q,r = 1,Q). (2.9.31)

Next, consider a numerical example which illustrates the previous forma-
1ism. The 58Ni(n,p)>® Co reaction exhibits a sharp threshold at E;= 0.5 MeV
although the reaction Q-value is positive. The reason is the effect of the
Coulomb barrier penetration by the incident proton. Suppose Ty =~ 0.05 MeV and

Ero = 0.005 MeV. Assume the beam slit width is such that a random error of
+0.002 MeV is observed for E, ~ 1 MeV. The available threshold calibration da-
ta are given in Fig. (2.9.1). The normalized X2 is 0.2897 which indicates a
very good fit of Eq. (2.9.7) to the data. This information is used to calcu-—
late the energy scale and 58Ni(n,p)38 Co cross section errors at Ep = 1,2,3,4
and 5 MeV. The energy scale errors due to slit wandering vary from *0.002 MeV
at 1 MeV to *0.005 MeV at 5 MeV, and these errors are uncorrelated. The energy
scale error due to uncertainty in the lithium target thickness varies from
+0.002 MeV at 1 MeV to $0.001 MeV at 5 MeV (decreases with advancing neutron
energy). This error component is 100% correlated for all energies. The energy
scale errors due to probe calibration uncertainty vary from +0.0007 MeV at
1 MeV to *0.0045 MeV at 5 MeV. These errors are partially correlated (87-100%).
Fig. (2.9.1) indicates the combined effects of all these error components. The
result is an energy scale uncertainty ranging from +0.0029 MeV at 1 MeV to
+0.0066 MeV at 5 MeV with correlations in the range 24-45%. The corresponding
cross section errors and correlations are also indicated in Fig. (2.9.1). The
cross section errors range from ~1.8% at 1 MeV where the 58Ni(n,p)58 Co cross
gection changes rapidly with energy to ~0.2% at 5 MeV where the energy depen-
dence is gradual. These are not large errors, and the input parameter uncer-
tainties are realistic. So, it is hard to explain discrepancies ~0.02-0.05 MeV
between monoenergetic and white source energy scales for this energy region, a
not uncommon occurrence, on the basis of monoenergetic energy scale errors
alone.
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Figure 2.9.1: Input and results for proton energy calibration. E =

calibration proton energy, H = NMR probe reading,

EH = error in NMR reading, EC = error in proton cali-
bration energy only, EE = composite Proton energy error
due to calibration and measurement effects, B = cali-

bration constant, EB = error in calibr
correlations in calibration constant. errors, CHI2

CB =

ation constant,

and CHIZ2NM are chi-square and normalized chi-square for

the fit, respectively, TO = lithium target thickness,

ETO = error in lithium target thickness, FEP = constant
which establishes proton energy error due to finite slit
effects, EP = input proton energy for error propagation
calculation, EN = neutron energy, EEN = error in neutron
energy, SIG = cross section, ESIG = cross section error,

CEN and CSIG are energy and cross section error correlations.
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2.10 Covariance Matrix for a Measured Neutron Spectrum

Various approaches have been pursued in the quest to achieve a satisfac-
tory nuclear data base for reactor applications. The differential approach
involves measurement or calculation of microscopic nuclear quantities, such as
cross sections, with attention to the dependance of gsaid quantities on energy,
angle, and even nuclear quantum numbers such as spin and parity. Progress has
been made as a result of many experimental and theoretical studies, but there
are shortcomings.

Differential data are not directly useful for analyzing actual reactor
performance. Reactors are complicated instruments, so the link between micro-
scopic differential data and reactors is only achieved at the expense of con-
siderable computational effort, with attendant complications and uncertainties.
Certain microscopic integral quantities such as reaction rates and spectrum—
average cross sections can be related more closely to the performance of
specific reactors, and therefore considerable attention has been paid to
investigating these quantities. Ideally, microscopic differential and
integral data, and macroscopic reactor performance characteristics should be
consistent. A measure of the immaturity of this technology is the fact that
often they are not. C/E discrepancies, as they are called, develop when
measured integral results (E) fail to agree with computational results (c)
involving the folding of differential nuclear data, using a model which one
hopes will be adequate to describe a given reactor.

Meaningful discussion of C/E discrepancies is not possible without a
reasonable formalism for consideration of errors. Progress has been made in
assessing differential data errors and correlations. Errors and correlations
for measured integral quantities have also been discussed. The weak link in
the error assessment chain appears to be the specification of errors and
correlations for the reactor parameters which must be folded by means of
reactor model calculations with differential data in order to provide calcu-~
lated results for comparison with integral experiments. The problem is not a
new one, but progress has been slow.

Benchmark fields have been conceived in order to expedite the task of
subjecting basic nuclear data or data evaluations to integral tests. Bench-
mark fields are basically low-power neutron sources whose spectra bear some
resemblance to those which may be encountered in commercial machines, but
otherwise are much simpler and, hopefully, much easier to characterize.

The benchmark field concept has provided some successes but there are
serious limitations. Even the simplest reactor-source fields are rather
strongly dependent upon nuclear data, especially neutron fission, capture and
scattering data for the actinides and neutron capture and scattering data for
the structural and coolant materials used in these reactors. Revisions in
these data lead to revisions in neutron spectral forms for most of these
fields. Only the 252Cf spontaneous fission neutron spectrum and some
accelerator-produced neutron fields appear to offer the possibility of serv-
ing as test spectra whose characterizations are relatively independent of
the data base one hopes to test. Radioactive neutron sources such as Pu-Be
have been used but have too many disadvantages to be seriously considered as
benchmark fields.
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In contrast to the considerable effort devoted to development of covari-
ance information for differential and integral nuclear data, the investment of
effort on development of covariance specifications for benchmark neutron
spectra has been very modest. At present, there is no published covariance
information available for the 252Cf fission neutron spectrum, which is probably
the best known neutron field available today for nuclear data testing. This
is a surprising state of affairs considering the fact that there are several
active research programs which involve measurement of integral nuclear data
for the Californium field. The author is aware of one paper dealing with a
covariance matrix for the Am-Li neutron spectrum [11].

In this section, the matter of development of covariance information for
simple spectra based on 252Cf spontaneous fission or accelerator neutron
production will be addressed. It appears that the most important aspects of
error characterization depend upon rather elementary quantities such as
length, time, detector efficiency and counting statistics. It will be shown
how these various uncertainty sources can be combined in order to provide
covariances for the measured broad-energy neutron spectrum.

Californium and accelerator-source neutron spectra normally originate
from near-point sources, and owe much of their simplicity to this fact.
Characterization of the neutron spectrum at an arbitrary field point generally
involves measurement of the intensity, energy distribution and distribution of
incident-neutron directions. For a point source, all that are needed are the
intensity and energy distribution. A detector capable of measuring pulse
heights and interaction times for events produced by incident neutrous is
required for the task. If time zero can be established, neutron time-of-flight
(TOF) techniques can be used to define the neutron energy. .

Assume that the spectrum {s deduced from the measured yileld in a series
of consecutive energy bins with well-defined energy widths. y; represents the
measured total events, corrected for background if necessary, in the ith bin.
€j represents the corresponding detector efficiency. E; repesents the median
energy of the bin. Finally, ¢4 represents the neutron spectrum. Actually, as
defined here, ¢4 is the product of the energy~bin width and the average value
of the spectral density function over the bin interval. Thus,

¢; = v,/ey, (A =1,n) (2.10.1)

The spectrum depends implicitly on neutron energy as well, so we can write

s = 33, 8 B = 3D, (2.10.2)
where R
. .1 (2.10.3)
¢ - : L]
¢n

It is very unlikely that $, so defined, will be normalized, i.e., that

n
¥ ¢i =1 . (2.10.3a)
i=1 :
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Other vectors from Eq. (2.10.2) are:

1
y = . R (2.10.4)
yﬂ
€
[ €,
e = | , (2.10.5)
€
L n
. [ E)
E = : , (2.10.6)
E
L n
™ &>
y . .
x = |8 . (2.10.7)
*
E

> > +
s Ee’ EE and Ex can be defined with

>
Furthermore, corresponding errors E¢, y

Q. mY

correlation matrices E¢, Ey’ EE, EE an Ex' Owing to the nature of the vari-
+ > >
ables, the errors in ¥, €, and E are uncorrelated between the different sets, so
c 0
- y .
Cx = Ce ) (2.10.8)
0 CE

The error propagation formalism of Section IV, Ref. 1, can be applied to

deduce the covariance matrix V¢ for the derived spectrum $. The applicable
formula is

5. 0E) eC (3 et
v - (Sxi Ex) C, (ij Ex) (1, § = 1, n). (2.10.9)

s -
Thus, the errors Ey and correlation matrix C¢ are obtained from

E - )1/2

b1 14 =1, n), (2.10.10)

Voit
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C¢1j = v¢ij/(E¢iEbj) (1, 3 =1, n). (2.10.11)

Sxi1 18 a sensitivity (or design) matrix having the form governed by the follow-
ing formulas:

s 0
- yi _
S.y = Sy ) (1 = 1, n), (2.10.12)
0 Sy
0 0]
syi = (aq,i/ayi) (1 =1, n), (2.10.13)
K "o_
" 0 0]
S, = (a¢1/aei) (1 =1, n), (2.10.14)
| 0 "o_
0 0]
Sgy = (3¢ /3E )y (1 =1, n), (2.10.15)
o} °'o j
(a¢i/ayi)‘ = 7l = 4,/y, (1 =1, n), (2.10.16)
(a¢i/ae1) = -yilei - - ¢i/ei (41 =1, n) . (2.10.17)

The quantities (3¢/3E)4 can be estimated from the general trend of the spectrum
shape.

Following some algebra, it can be shown from Eq. (2.10.9) that



eC o (S . ®E) (2.10.18)

-’
The errors in y are largely random in nature, thus

Cyij =2 Gij (1, =1, n) . (2.10.19)
(Kronecker delta)

Thus, it can be shown that

Voy = Oyy0y8y(E Iy )(E

vi

¢ ¢ (E_ /e )(E_/€) (2.10.20)

eij 173 el 1 €y’ ]

(34/3E), (3¢/3E) E

Eij 3 Epy Ej

The determination of the covariance matrix Vg for the measured spectrum 3
reduces to the matter of obtaining the detector e?ficiency errors and correla-
tions and the neutron energy scale errors and correlations. These are separable
problems as seen from the preceding formalism. The errors in the detector
counts are

1/2

Yy (1 =1, n), (2.10.21)

E ~

yi

so these need no further discussion.

> > -
Determination of €, E. and Ce depends upon the nature of the detector used

and the procedure by which it was calibrated. Although the problem of develop-
ing a covariance matrix for the efficiency of an organic scintillator has been
examined by the author, the details will not be discussed here since they apply
to a specific detector. Consideration of this topic would detract from the
objective of this section.

Consideration of the errors and correlations for the neutron energy scale
i8 a more general topic which is worthy of inclusion in this section. The
time—of-flight method can be applied in the case of Californium neutron-
spectrum measurements since detection of the fission fragments yields a zero-
time mark. For accelerator—source spectra, such as the thick-target Be(d n)
reaction, pulsed beam techniques can be used to provide needed timing informa-
tion. The gamma-ray flash from the accelerator target readily yields time zero.
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The assumption of non-relativistic mechanics leads to noticeable simpli-
fication in the formulas, without an excessive sacrifice in accuracy, for error
assessment in the MeV-energy range. However, the method can be applied in
principle for relativistic analyses with few complications. The non-relativistic
treatment is presented here.

Define the following variables:

ty = median neutron arrival time for ith bin,

to = zero time for the measurement (established from fission frag~
ment or gamma-ray pulses),

b = constant which calibrates TOF spectrum recording device (e.g., a
pulse-height analyzer) in nanoseconds per channel,

X, = channel which locates centroid for time zero in the spectrum,
xi = channel corresponding to the ith TOF spectrum bin,

L = flight path,

¢ = sgpeed of light,

h = constant equal to 72.3 ns/m which is the inverse velocity for a
1 MeV neutron.

The relationship between flight time and neutron energy is

t = (nLy/El/2, (2.10.22)
Since

X, - x = - (to - t)/b, (2.10.23)
we have

E, = thz/ti = h2L2/[qL + b(x, - x)]2, (2.10.24)

with q defined as ¢™!. Thus, we can write
E - Eb, L, x, 0. (2.10.25)

The energy errors can be related to the_errors in b, L and Xo+» Therefore, the
neutron energy scale covariance matrix Vg can be derived from the formula
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- +> -
VEij - (Szi L] Ez) L Cz o (Szj L Ez), (1, 1 =1, n) (2.10.26)
where
> b 4
z = L ’ (2010027)
Xo
and the corresponding errors Eb’ EL and Exo for b, L and x form the vector
E > 2 10 28)
Ez H‘ L ] L] L]
E
X0

The correlation matrix Ez i8 just the unit matrix,
100
c, = |o10], (2.10.29)
001

since the parameters b, L and x, are independently determined. The sensitivity
matrices have the form

(azi/ab) 0 0
S,y = 0 (3Ei/3L) 0 (i =1, n), (2.10.30)
i 0 0 (aEi/axo)
with
(3Ei/3b) = Ei[° z(ci - to)/(bti)] (i =1, n), (2.10.31)
(3E1/3L) - Eilz(ti - to)/(Lti)] (L1 =1, n), (2.10.32)
(3Ei/3xo) = Ei(' 2 b/ti) (1 =1, n). (2.10.33)

Following some algebra, one arrives at the expression
= - - 2
Veiy Eizjla(t1 co)(tj to)/(titj)] (E,/b)
- - 2
+ EiEjM(ti t:o)(tJ to)/(titj)] (R, /L) (2.10.34)

2 2 -
+EE 4 0% tye)) B (i, 3 =1, n).
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From this, one can deduce that the fractional energy errors are

- - 2742 2
(Em/Ei)2 [4(ti :o) /ti] (E,/b)
o+ [4Ct, -t )2/t2] (R /1)2 (2.10.35)

27142 2 =
+ [4 b%/e]] EZ (4 =1, n).
The correlation matrix EE is derived in the usual way from the formula

/(E (i, § = 1, n). (2.10.36)

Cers = Veiy

£1Fgy)
— ' — n

The spectrum ¢, defined as (¢ /£ ) with equal to
Vs i

n
remains normalized, i.e., 2:‘”1 = 1 regardless of changes =1

i=]1
in ¢ . The covariance matrix V; can be derived using the standard
error propagation rules; it has the form

n n
Vg © X X (€6~ ¢ (& 540~ ¢j) C¢k£E¢kE¢£

k=1 =1 (2.10.37)
(i,j‘l,n) . '
It can be quite easily shown that this matrix has the interesting
property that
n n
2 v¢1j = 2 V¢ij =0 (i,j=1,n). (2.10.38)
i=1 j=1

This is equivalent to a statement of flux conservation for the spectrum,

A complete evaluation for the Californium neutron spectrum, inclusive of
covariance information, should be performed. As indicated above, each experi-
ment could be examined according to the relatively simple procedures indicated
above. In practice, this might be a rather frustrating task since previously
reported Californium spectrum results probably will not provide an evaluator
with sufficient information about the details of the experiments to permit the
generation of covariance matrices. In fact, it is very likely that the experi~
menters themselves no longer have this information available. The same consid-
erations apply to accelerator-source benchmark fields. The conclusion is that
future benchmark spectrum determinations should be undertaken with full consid-
eration of covariance information, and the results should be reported in such a
way that the required error information is available for evaluators. This is
not likely to impose much extra work on experimenters, since the needed infor-
mation is usually available at the time that the experiment is performed. What
is needed is for the experimenter to provide somewhat more detailed documenta-
tion of error information than is traditional when reporting the results.

Development of covariance information for reactor-source benchmark fields
could likely be a much more complex task. It is possible that this is an
impractical goal for the near term. Since specification of these fields
depends strongly upon changing nuclear data basis, the fields themselves become
parts of the data base (or at least products of the data base). One might
well ask whether such fields should not be evaluated simultaneously with the
nuclear data base. If so, then the usefulness of these fields for independent
testing of nuclear data should be seriously questioned.



65—

2.11 Uncertainty Determination for a Calculated Integral Quantity

Integral-differential comparisons provide useful tests of nuclear data
for reactor applications. However, it is important that such tests be per-
formed properly. For example, it is not possible to say that a discrepancy
exists between measured and calculated integral results if the differences are
within the combined errors. But, how are the errors to be determined? Very
often in the past, these errors have not been properly assessed so that
controversies over "discrepancies” have continued without a rational basis for
debate.

This section will indicate how integral and differential results may be
properly compared using covariance error formalism. This will be accomplished
by considering a symbolic example in which a calculated and measured spectrum—
average cross section are compared. The reader should realize at the outset
that this example is somewhat simpified in order to clarify the concepts.
There are usually strong correlations between integral data for various reac-~
tions because of the way these measurements are performed. Foils of several
materials are exposed to the same neutron spectrum and reaction rate ratios
are measured. One or more reactions from the set serve as standards for
spectrum—average cross section determination. Correlations between differen-
tial results for various reactions may also exist owing to common measurement
techniques, common apparatus and, especially, the use of common standards.
Simultaneous evaluations and/or integral-differential comparisons for several
reactions should be carried out when the data are thus correlated [12].

For the present considerations, consider one reaction type with a differen-
tial cross section O(E) as a function of neutron energy, and a measured
spectrum—-average cross section o for spectrum + (E). Thus, the calculated

integral result is
. [ o

. z[ o(E) ¢(E)dE / f¢(E)dE. (2.11.1)

0 0

For practical considerations assume O; can be calculated with adequate
accuracy using group values and the formula

n n
% = E %59, E o) (2.11.2)
j=1 j=1
with -
o, = o(E,) (j=1,n), (2.11.3)
h | h |
b = $(E)  (=L,m) . (2.11.4)
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Define o as the collection of_oj(j-l,n)_pnd 3 as the collection of
¢4(J=1,n). Assume that matrices V and Y, are available. The importance
o% errors and correlations for the spectrum ¢ has generally been overlooked
in the consideration of intggral-differe tial discrepancies. Error vectors
and correlation matrices, (Eg, C5) and ( ,C¢), can be considered
since they provide information fully equivalent to the covariance matrices

according to the equations

E,y = (vc,jj)l/2 (§=1,n) , (2.11.5)
Cotg = Voyg/(BygByy) (1,3=1,m), (2.11.6)
By, = (V¢JJ)1/2 (§=1,n), (2.11.7)
c¢ij - V¢ij/(8¢1ﬂbj) (1,j=1,n). (2.11.8)

The measured spectrum~average cross section has an error E o’ Further-
more, there may be a correlation between the measured integral result and the

differential results. The most likely source of correlation betyeen the
measured integral cross section Oy and the differential results o is a nor-

malization constant corresponding to 100% correlated items such as sample
material composition, gamma-decay branching, etc. So, assume

7 =go*, (2.11.9)

o =mgo* (2.11.10)

where g is the common factor. Then the errors can be expressed as

2 o g2 2 *2 ;. %2 -
Bpy~ = 04" [(E2/8%) + (K, /0,")] (3=1,n), (2.11.11)
2 o452 2 *2 *2
Eom = %n [(ES/8) + (B, *2/s *2)], (2.11.12)

The first term in each of Eqs. (2.11.11) and (2.11.12) represents a fully
correlated error shared by the integral and differential results because of
the common normalization factor.
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It useful to define an augmented cross section vector M given as
<>
* g
8 = .
m
The corresponding augmented covariance matrix,

v 2/,2V2
V0 °m(Eg /8%)a

<l
]

27.2:2T E 2
om(Eg /g8%)o om

(2.11,13)

(2.11.14)

includes the terms common to the integral and differential results, with ;Ethe
transpose of o. The corresponding error vector Eg and correlation matrix Cg

are given by

E
[+
E - )
E
om
Cary = Vo1g/(BgyBey)  (1,3=1,mH).

It is instructive to write Cg in the form

[ C ¥
_ g
C =
8
;T 1
where
(Eg?/gz)
? - (i = l,n)o
i (Eoi/oi)(Eam/cm)

(2.11.15)

(2.11.16)

(2.11.17)

(2.11.18)
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¥ represents the correlation parameters linking the measured integral and dif-
ferential results.

With the above considerations in mind, it is possible to provide a uni-
fied assessment of the errors and correlations for the measured and galculated
spectrum~average cross sections. The variables of the analysis are ¢, ¢ and Ope
Define

> +
¢ $
x=13 - , (2.11.19)
g <>
m 8
[ 7 [, ]
$ E+
> +>
Ex - EO = (2.11.20)
>
] E
e m. e s-
C¢ 0 0
_ . G, O
C = 0 C ¥ = _ i (2.11.21)
X [}
0 C
S
o ¥ L

. >
There are no assumed correlations between the spectrum errors E¢ and the other

parameters errors.

>
Define f by
b3 o
fa fl - S , (2.11.22)
2 m
with
£ o=f (x
L= £ (), (2.11.23)

+
fz = fz (x). (2.11.24)
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The covariance matrix Vg provides all the desired information about the errors
and correlations for the calculated and measured spectrum—-average cross sections.
Thus,

- + T - >
Ves = 5 ¢ E)" @ C,® (5, 0E) (k,2=1,2), (2.11.25)

The sensitivity matrices S; and Sy must now be examined, we have

_ Sok _ 0 Sy O
S, = S - - (k = 1,2), (2.11.26)
k o % g 0 Se
omk ’
with
Som1 = (3f;/30_) = 0, (2.11.27)
Somz = (3f,/30 ) = 1, (2.11.28)
(afk/a¢l) 0
§¢k = ‘.. (k = 1,2), (2.11.29)
0 (afk/a¢n)
r(afk/aal) . 0
S, = ‘e : (k = 1,2). (2.11.30)
ok 0 (afk/aon)
It can be seen that
§¢2 =0 ‘ (2.11.31)
since f2 does not depend upon 3, and
S, =0 (2.11.32)

g2

since f; does not depend upon o either.
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Clearly, from Eqs. (2.11.21) and (2.11.25),

=(5, ek) e E¢o(§¢20E¢)

+ (gsk ° ﬁs)T ° Es ° (§s£ ° Es).

Following considerable matrix algebra, one obtains

-(§1.§¢)T.a O(§¢1.§)

Vel = 5y o ¢

- T - -
+(5 e Eo) °C o (5 o Eo),

- T >
Vf12 - Vf21 = Ecm (Sal ¢ Eo) * ¥

The errors are

1/2

Eep = gy ™5

1/2
Beg = (Vgpp) '
with correlation coefficient

Ce12 = Ceay = g2/ (B Egy)e

The partial derivatives needed for these calculations are

o + T >
(3£, /39,) = i -9 _®¢ (4 = 1,n),

(21 ¢J) ‘?:; ¢J)2

n
(3£,/30,) = 6,/ 4.) (1 = 1,0).
31

(2.11.33)

(2.11.34)

(2.11.35)

(2.11.36)

(2.11.37)

(2.11.38)

(2.11.39)

(2.11.40)

(2.11.41)



-71-

Some recent evaluations provide information on Va, but no programmatic
effort has been made to examine the correlations egisting between the differ-
ential and integral values, gamely the parameters y. Furthermore, informa-
tion on covariance matrices V, for standard broad-energy spectra used for
differential data testing is sparse. So, the outstanding current obstacle to
application of the method described in this section is lack of the requisite
input information on errors and correlations, especially for standard bench-
mark spectra. This is an area of investigation which must be pursued by
researchers if progress is to be made in the area of integral-differential
data testing.
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2.12 Llegendre Polynomial Fit to an Angular Distribution Data Set

We will consider an angular distribution data set corresponding to the
elastic scattering of 2.89 MeV neutrons from a sample of Fe-54 metal. The
elastically scattered neutrons are measured by time of flight, using several
organic scintillators whose efficiency shapes as a function of neutron energy
have been measured by observing their response to the known spontaneous-—
fission-neutron spectrum of Cf-252 [13]). Normalization of the scattered-
neutron detector array is accomplished by performing measurements of the
well~known differential scattering cross section for carbon. Various signi-
ficant errors and their correlations for this experiment will be discussed
briefly here, and the covariance formalism from Ref. 1 will be applied to the
process of fitting a measured angular distribution with a Legendre polynomial
expansion. A description of the apparatus appears in Ref. 14.

Random Error (R):

The dominant source of random error for the measured differential cross
section points is the determination of the peak counts for the elastic peak in
the time-of-flight spectrum. The errors originate from statistical and back-
ground subtraction uncertainty (e.g., Section 2.6). The differential cross
sections and random errors for the present example appear in Table (2.12.1).

Normalization Error (Sj)

Four sources of error in the measured differential cross section have
been identified, each of which involves a scale factor affecting the cross
section at all angles. The composite error is thus fully correlated for the
data in Table (2.12.1). It is assumed that there is x1X error which results
from uncertainty in the yield of a monitor detector which measures the relative
neutron fluences for Fe-54 and carbon scattering runs. Another z0.5% fully-
correlated error comes from uncertainty in the number of Fe-54 atoms for the
sample. Uncertainty in the absorption of neutrons by the Fe-54 sample produces
an error of 1% in the effective neutron fluence which can be assumed to be
nearly fully correlated. Finally, a fully correlated error of 222 18 assumed
for the integrated carbon scattering cross section. The combined fully-
correlated error is ==2.5%.

Angle Error (Sj)

The relative angles for the measurements are rather well known, but there
is uncertainty in determining the zero angle and thus the absolute angular
scale. It is assumed that an uncertainty of 0.3 deg exists. The resultant
uncertainty in the differential cross section depends upon the sensitivity of
a particular differential cross section to angle. Estimated uncertainties
appear in Table (2.12.1). These are fully-correlated errors.

Intercalibration of the Several Detectors in the Multi-Angle System (S3)

The origins of uncertainty are many and complex. Based upon experience,
the error appears to total 3% from this category. Correlations are difficult
to judge, so it is assumed that the errors are 3502 correlated as a compromi se
between the assumptions of full correlation or no correlation.
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Multiple-Scattering Correction (S4)

Again, the uncertainty and associated correlations are difficult to
estimate. An estimated uncertainty of 2% is reasonable, and it is clear
that the errors for adjacent angles are more strongly correlated than for
widely-separated angles. As an approximation, it is assumed that the '
correlation behaves according to

c (6 )y =1 - (2.12.1)

L ej
where 6; and 8; are the laboratory angles in degrees for two differential
cross section data points.

The least-squares analysis 18 a straight forward application of the
procedures in Section VII of Ref. 1. A vector § of dimension n is defined

by

= (do/dﬂ)i (2.12.2)

where (dO/dQ)i is the experimental differential cross section for angle 91.
The angular distribution is to be approximated by the function f which is
the Legendre-polynomial expansion

m

£(6) = E pj Pj-l (cos 91). (2.12.3)
=1

We seek P (Pyseee»p ) 8O that

y, ¥ £(8) (1 = 1,n), (2.12.4)
or

»> - +>

yxAe®p, (2.12.4a)
where

AiJ = Pj-l (cos 91) (L, =1,n; j = 1,m). (2.12.5)
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Based on the discussion above, the covariance matrix Vy can be derived
from the equations

= 2 2 2 2 2
Vyrr = Bre” * Bgpy” ¥ Egpy® + Egyy® + Egyy (1 = 1,n), (2.12.6)

Vy13 = Bsit Esiy * Espy Egpy * 05 Egyy Egyy
+C (01, ej) ES4i ES4j 1 #3), (2.12.7)

with C (64,6 2) from Eq. (2.12.1). The correlation matrix Ey is calculated

using Eq. (34) of Ref. 1:
Cyij = vyij/(Eyi Eyj) (1,5 = 1,n), ‘ (2.12.8)
where
1/2
Eyi - (vyii) (1 = 1,n). (2.12.9)

The correlation matrix for the data in Table (2.12.1) is given in Table
(2.12.2).

The solution minimizes the chi-square expression

2-(y-3ep)Te Vy"l o (y~-Ziep). (2.12.10)

We assume m=9, and derive the solution from the formulas

I |

= A [ ] V [ ] A ’ 2.12011
P ( y ) ( )
3 - Ve ale Vy'l o 3. (2.12.12)

Three possibilities are considered for this problem:

(1) Include all errors from Table (2.12.1) and the covariance matrix as derived
from Eqs. (2.12.6) and (2.12.7).
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(i1) Include all errors from Table (2.12.1), but assume them to be
uncorrelated.

(111) Consider only random errors from Table (2.12.1).

These three differgnt assumptions lead to three different solutions for
$ and the error vector , as given in Table (2.12.3). The computed values
of chi-square were <1 for each of the fits performed, which implied that the
Legendre expansion was capable of fitting the data to well within the assumed
errors—-even if only the random errors are considered. The differences in the
derived coefficient vectors P are small for these three fitting approaches,
and each yields an integrated cross section of 2.389 b to the fourth signifi-
cant figure. Therefore the only practical difference lies in the errors and
correlations. Method (i) ylelds an error of 3.9% for the integrated cross
section, method (ii) yields 1.9%, and method (iii) yields 0.4X. The correla-
tion matrix differs considerably for each of these solutions. The explicit
matrices for methods (i) and (iii) are given in Table (2.12.4) for general
interest. The widely different correlation matrices would have an impact on
some uncertainties, e.g. the uncertainty for the relative scattered neutron
yield at two different angles.

Figure (2.12.1) shows the fit to the data points yielded by method (1)
analysis. Very little difference was seen for the other two fitted curves.



Table 2.12.1

Differential Cross Sections and Errors
for Neutron Elastic Scattering from Fe-54 at 2.89 MeV

Error Components (b/sr)?

Laboratory Differential Angle Detector Scattering Total
Angle Cross Section Random Normalization Uncertainty Calibration Correction Error
(deg) (b/sr) (R) (s)) (S,) (S,) (s,) (b/sr)
17.3 1.0662 0.0053 0.02666 -0.0072 0.03199 0.02132 0.04763
27.2 0.8040 0.0044 0.0201 -0.0123 0.02412 0.01608 0.03762
44,1 0.3571 0.0031 0.008928 -0.0063 0.01071 0.007142 0.01717
63.0 0.0846 0.0015 0.002115 ~0.00159 0.002538 0.001692 0.004308
81.0 0.0471 0.0010 0.001178 0.00057 0.001413 0.000942 0.002366 .
99.0 0.0884 0.0015 0.00221 0.00039 0.002652 0.001768 0.004177 T
116.0 0.1071 0.0016 0.002678 0 0.003213 0.002142 0.004964
131.0 0.1046 0.0015 0.002615 -0.00015 0.003138 0.002092 0.004831
146.0 0.0931 0.0014 0.002328 -0.00015 0.002793 0.001862 0.004321
155.9 0.0885 0.0014 0.002213 -0.00039 0.002655 0.00177 0.004146

aSee Section 2.12 in text for discussion.

bNegative sign implies that an increase in angle leads to a decrease in the differential cross section. The
sign should be included in Eq. (2.12.7).
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Table 2.12.2
Correlation Matrix Ey Derived from Data in Table 2.12.1

1 2 3 4 5 6 7 8 9
1

74 1

o71 76 1 Symmetric

.66 71 T2 1

.56 .50 T W49 .47 1

.60 .56 .56 .55 .63 1

.61 .59 .59 .58 .60 .66 1

.60 .59 .59 .57 .58 .64 .67 1

.58 .57 .57 .56 .56 .62 .65 .67 1

.57 .57 .58 .57 .53 .60 .64 .66 .67
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Table 2.12

.3

Solution Parameters and Errors for the
Three Different Fitting Procedures Discussed in the Text

(1) (11) (4i1)

) .1901 * ,0075 .1902 * ,0036 .1902 £ .0007
P, .2602 * ,0119 .2604 * ,0088 .2605 * ,0013
Py .3486 t ,0152 .3488 t ,0119 .3486 * ,0019
P, .3050 * .0136 .3050 * ,0135 .3052 * ,0021
Pg .1413 £ ,0105 .1413 * ,0170 .1405 * ,0028
Pg .0332 * ,0091 .0331 * ,0172 .0326 * ,0030
Py .0102 * ,0094 .0102 * ,0179 .0088 * .0035
Pg .0048 * ,0068 .0048 * ,0127 .0036 * ,0031

.0055 * .0092 .0057 * .0165 .0039 * ,0043
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Table 2.12.4
Correlation Matrix Ep for Solutions (1) and (iii)

1)
1 2 3 4 5 6 7 8
1
.93 1
.95 .96 1 Symmetric
.88 .89 .91 1
51 .50 .65 .71 1
.08 .13 .21 .44 72 1
.03 -.03 .16 .19 .73 .67 1
0 0 .06 .19 .52 .68 .65 1
.06 =-.04 .13 =03 .44 .21 .66 .53
(111)
1 2 3 4 5 6 7 8
1
.37 1
.45 .31 1 Symmetric
.03 .30 .04 1
A5 =13 .48 .16 1
-.25 .08 -.05 .49 .29 1
.21 -.25 .40 -.08 .68 .27 1
.05 .15 =07 .27 .26 .48 .33 1
.35 -.14 .50 ~.28 .54 =-.04 .60 .36
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Figure 2.12.1:

Linear plot of neutron elastic scattering distribution
for Fe-54 at 2.89 MeV. Solid curve is a 9-parameter
Legendre expansion which has been fitted to the experi-
mental differential cross section points using covariance
methods.
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2.13 Combination of Dominant Error Components for Neutron
Crogs Section Measurements

The interested reader will no doubt wish to know how the various
techniques discussed in this report might be put to practical use to analyze
the errors for a cross section measurement., This is a difficult topic to
address; there are so many special situations that it is not reasonable to
expect a general procedure for performing error analyses. Also, the subject
would not be appropriately served by giving a specific example since the basic
concepts might be masked by excessive detail. Therefore, the subject will be
treated by considering a symbolic cross section ratio experiment. The reader
who understands this material can readily extrapolate to specific applications.

Derivation of cross sections from raw data involves application of
various corrections. The approaches to this task are as varied as the styles
of the experimenters. One can choose to combine the raw detector counts, then
apply a number of multiplicative factors to account for the corrections. These
individual correction factors can be examined separately using several methods.
When applied to determination of a cross section ratio, the form of the analysis
is:

m
R = cleci'1 - (1, NI/Yl N,) '"' Fi (2.13.1)
k=]
where
Yl’ YZ = measured detector counts,

Nl’ N2 = gample atom numbers,

Fk = correction factors.

Other data analysis procedures may involve more detailed simulation of the
experiment using a digital computer [15]. In this way, the corrections become
rather intertwined, but the end result is the same.

From the point of view of error analysis, the approach indicated by
Eq. (2.13.1) is the most useful. In principle, omne could perform a detailed
error analysis for a computer model calculation by simply assessing the un-
certainty and correlations for all input parameters, calculating appropriate
sensitivity coefficients, etc. This is not usually a practical approach.
The experimentor who wishes to do a reasonably accurate yet still practical
assessment of the experimental errors must carefully analyze the experiment
and identify the key components for the purpose of error assessment. Certain
parameters are very well known and introduce very little error. One can avoid
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considering these to minimize labor. Other parameters introduce errors which
are so strongly correlated, if not completely so, for all the measured points
that it is sensible to assume 100% correlation, thereby avoiding the task of
determining exact correlations.

In other situations, the correlations, while not vanishingly small, are
small enough so that the results will not be seriously affected by neglecting
these correlations. The neglect of these small correlations can also lead to
considerable simplification. Correlations intermediate in magnitude can be
problematic. The experimenter must make practical decisions. If the error
component is substantial, and the impact upon the results warrants the requi-
site labor, then the investigator can proceed to do whatever may be needed in
order to make an accurate assessment of the correlation pattern. Correlations
are introduced by common dependency upon implicit variables which may be
difficult to identify. On the other hand, if the impact of an error component
is small, then approximation methods are justified.

It should be evident from this discussion that the data analysis process
may well require the development of two distinct analytical models. The model
used to derive cross sections or cross section ratios from new data might be
quite detailed, including a number of small corrections which involve very
little error. A second, simplified model should be envisioned for the purpose
of error assessment. This model includes the main features of the cross section
calculations, including those factors which account for most of the error. It
should not be forgotton that error derivation involves considerable estimation,
therefore the experimenter can be forgiven if the model used to combine these
estimated errors falls short of an exact description of the complete data
analysis process.

Eq. (2.13.1) provides a useful analytical model for discussing error
analysis for a typical cross section ratio experiment. The correction factors
Fy should address aspects of the experiment which are very weakly cross correlated,
and can thus be treated as uncorrelated for modeling purposes. The Fy are not
primary variables, but represent relatively distinct features of the experiment
such as geometry, multiple scattering, radiation absorption, efficiency, etc.,
which are most strongly dependent upon distinct sets of primary variables.
Proper selection of the factors Fy allows for examination of error components
one by one, with eventual combinaton of the essentially decoupled components
in a relatively uncomplicated fashion.

Suppose n ratios Ri are measured at energies Ei (i=1,n), then

E (1i=1,n), (2.13.2)

Ry = Ry(Ypys Yous Nygs Npys FryneeesFpys Ep)

+ + + + > >
according to Eq. (2.13.1)., Let i, Y;, Y2, N;, No, Fl»'°':ﬁﬁ and E represent
all the experimental quantities indicated in Eq. (2.13.2). Then, in vector
notation, Eq. (2,13.2) becomes

N, F FLE 2.1
1! 2’ 1)"" m’ )' ( . 3'3)

+ > >

+ +
R=R (Y, ¥, N
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The dependence upon E is implicit since this variable does not appear in
Eq. (2.13.1). However, energy scale errors may be important if the measured
quantities fluctuate considerably with energy, so this source of uncertainty
ghould be examined by the experimenter (e.g., see Section 2.9).

> »> *> -

Given ghe errors ang correlations (Ey1s_Cy1)s+e«s(Eg,» Cg), one seeks to
derive for R the errors Eg and correlations Cr. The error propagation formalism
applicable to this problem is described in Section IV of Ref. 1. Define

i ¢

Y1

»> (2.13.4)

Nl’l+
]
2
[ %]
-

and

(2.13.5)

ol
]
Ol

Eq. (2.13.5) is an explicit statement of the assumption that correlations
between the various categories of errors are negligible. Also define
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1
o

SYli 3

Y24 =
Nli =

N21i

21}
°

Fli (2.13.6)

xi cee

wl
]

wi

Foi =
0 Sgi

wd

§xi is a semnsitivity (@r design) matrix which indicates the sensitivity of Ry
to all the parameters Yj,...,E considered in the analysis. All submatrices
of Sy4 are diagonal, e.g.,

0 0

(2.13.7)

o

= (3Ri/3Y

Y14 11 .

In fact, it is evident from Eqs. (2.13.1) and (2.13.2) that all of the sen-
sitivity submatrices from Eq. (2.13.6) consist of only one non-zero element.

- >
According to Ref. 1, the elements of the covariance matrix VR for R are
given by

- > T - - &>
vRij =(5, ®E) ®C ® (sxj ®E) (1, = 1,n). (2.13.8)

It follows readily that

- > T -— - >
- [ ] o [ J ®
VRij (5911 ® Eyp) ® Cy ® Gyyy ® Eyy)

+ ( ®E ) ®C.. ® (S...9E.)
Y2 25 Cv2

Sya21 Y2

+ T - - >
®@E ) ®C ® (S ®E

+ (Sypp ® By N1 vy ° Enp) (2.13.9)

.* T -
Evp) *Cy ®

+ (Spp1 ® Eyp

~
H
[ ]

(o1}

- >
[ ]
+ (Spy ® Epy

+ .e0 (iDJ - 1ln)'
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The intrinsic simplicity of the S matrices leads to further reductions for

Eq. (2.13.

vRij

9)
E E E E
Y14 Y13 Y24 Y23
=R, R, [(—) ( ) C + (=) ( ) C
173 Y, Ylj Y11 Y, Yzj Y214
E E E E
Nli N1j N2i N2j
+ (—=) ( ) C + (=) ( ) C
N, Nlj N1ij Ny, 'sz N21ij
(2.13.10)
E E E E
Fli Flj Fmi Fmi
+ (—=—) ( ) C + eee + (=) ( ) C )
Fl, FU F11j F q ij Fmij
+ (an/an)i (zm/ara:)j Epy EEj cEij (1, = 1,n)

The partial derivative (9R/3E); at emergy E4 can be estimated by plotting
the measured ratios R versus energy E . A smooth curve drawn as an eyeguide
through these results becomes the basis for estimating the partial derivatives.

Eq. (2.13.10) may simplify more depending upgn the nature of the various
correlation matrices. The detector counts Y; and Y, are probably subject

primarily

c

v113 = Cv213 ® °14

to random errors (uncorrelated from one point to the next), so

§ (Kronecker delta) (2.13.11)

(1,3 = 1,n).

+ +
The correlation pattern for the sample atom numbers Nj and N9 depend upon
the nature of the experiment. Two extreme possibilities are as follows.

At one extreme, a pair of samples is used for all the measurements. An
example would be a fission ratios experiment where the two deposits are placed
in a back-to-back fission chamber and this apparatus is exposed to a neutron
source for the measurement of cross section ratios. In this case

1i
EN11
21

N2i

1’
N1’

(1 = 1,n) (2.13.12)
2’

N2’
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and

c 1 (1, = 1,n). » (2.13.13)

N11j - w2ty T

The sample atom errors are 100% correlated for ' the entire data set.

The other extreme is also possible. Suppose each measurement involves
a distinct pailr of samples. The sample materials may be uniform and con-
tribute negligibly to the ratio errors, but random errors in the sample
masses must be considered. Then

Cyig% Cnzag = 81 (1,j = 1,n) (2.13.14)

Partial correlations arise if both sample composition (correlated) and
sample mass (random) errors must be included.

Similarly, geometric correction errors may be uncorrelated, partially
correlated or 100%Z correlated depending upon how the experiment is conducted.
If the geometry is fixed and undisturbed through the entire experiment, then
the errors are correlated 100Z for all the data points. However if random
positioning errors for the detectors are dominant and the experimental setup
is adjusted prior to each measurement, then the correlations vanish. The
important point to be made is that the experimenter must provide enough
information about the way an experiment was actually conducted to enable the
correlations to be identified. This is rarely dome in the literature, so
development of covariance matrix information for evaluations generally in-
volves much guess work. Improvements in practices for reporting results are
needed.

Provision of error and error correlation information for certain factors
from Eq. (2.13.1) can be quite a speculative enterprise even for the experi-
menter. A good example is the application of multiple scattering corrections.
Scattering correction calculations are generally complex, involving scattering
cross sections, neutron source properties and geometrical parameters as input.
The correction factor can be written in the form.

F =M =1+a (1 = 1,0) , (2.13.15)

with o generally much smaller than unity. It is simply not worth the effort
in most experiments to try to make a rigorous assessment of the error in Fy.
Instead, one might choose to assume that a is uncertain by a fractiomal amount
PM for each data point:

Aui/ai : Py (1 = 1,n) (2.13.16)
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The error EMi in Mi is thus

E,, =~ a, P (2.13.17)

Futhermore, it might be assumed that the correlation is given by

E, - E
Co.. =1 - [ =By , (2.13.18)
Mi BE ax

where AEmax is the energy range covered by the experiment, i.e.,

|Ei - zj| < BE (1,j = 1,n). (2.13.19)

Eq. (2.13.18) states an assumption that the scattering correction errors

are strongly correlated for data points nearby in energy, but not so for
widely separated energy points. The approach indicated here for a scattering
correction is not fundamental, but merely demonstrates the sort of steps an
experimenter may take to provide plausible error and error correlation infor-
mation in situations where a precise treatment of the problem is obviously
impractical.

<>
The partial error components lead to an error vector ER calculated from
the equation

1/2

E,. =( 1 =1,n). (2.13.20)

Ri )

VRii
The correlation matrix ER is given by

C =V_../(

Ri ] Rij ) (i, = 1,n). (2.13.21)

Ert Egj

One of the major challenges to be met in the field of nuclear data is

the management of large quantities of numerical data. Suppose n cross section
ratios are measured, then n errors might be generated and n(n-1)/2 distinct
correlation coefficient as well, for a total of (n? + 3n)/2. If n = 100, this
implies 5150 pleces of data. Clearly, this becomes an unmanageable problem
very quickly, and illustrates a fundamental problem associated with reporting
errors and covariances: It would seem to require many more numbers to specify
the errors and correlations than to present the fundamental measured results.
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Actually, there is rarely as much unique information available about the
experiment as is implied by the size of the covariance matrix. In fact, it is
generally agreed by evaluators that experimentors normally should not provide
covariance matrices along with their results. Tables providing dominant error
components, and sufficient information to enable generation of correlation
matrices is suggested. This available information can then be manipulated
according to the needs of the situation. Even though experimenters should not
be expected to generate covariance matrices for their measured results, it is
important that they understand the process. Only then will they understand
how errors are derived and propagated, and therefore be prepared to examine
which of the errors in their experiments are significant and which are not.

The discussion in this section has been structured around comnsideration
of measured cross section ratios since most neutron data experiments involve
the measurement of ratios. If an experimenter measures ratios, his responsi-
bility is limited to reporting only the ratios and corresponding error and
correlation information. However, most users are interested in the cross
sections derived from the ratios. Thus,

(41 = 1,n), ' (2.13.22)

where ;2 are the unknown cross sections and 31 the standard cross sections.
Rules for combining ratio and standard errors are discussed in Ref. 1,-
Section V.
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3. CONCLUSIONS

The examples of Section 2 demomstrate that covariance methods can be
applied to a wide range of nuclear data analysis applications. Furthermore,
if these methods were more widely used by experimentalists, the long-term
ef fect would be a simplification of the evaluation process (or at least
reduced arbitrariness) and steady improvement in the data base for nuclear
technology.

Experimenters should realize that application of covariance methods will,
in some cases actually reduce the extent of the labor required to analyze
their experimental results. The numerical examples presented in this report
are diverse, but they were all analyzed using the few computer subroutines
presented in the Appendix. Had this not been possible, the work presented
in this report would have been much more time consuming and most likely would
not have been undertaken by the author.

Application of covariance methods in routine data analysis does impose
demands upon the experimenter which have traditionally been overlooked, namely
the examination of correlations between significant errors in the parameters.
This can be a somewhat frustrating job, but reasonable estimates followed by
proper error propagation analysis will surely lead to an improved understand-
ing of the experiment. There are instances where the raw data are relatively
free of correlations, but strong correlations in the errors for derived
results are introduced by the data analysis procedures (e.g., curve fitting).
The use of covariance methods then leads to the generation of more detailed
{nformation about the analyzed results than would evolve otherwise, at little
cost of additional effort. Several of the examples discussed in Section 2
demonstrate this point.

Concern has been expressed that widespread consideration of covar=—
iances might lead to an information explosion which would strain existing data
compilation institutions beyond their capacity. This is a serious question
which falls out of the scope of the present report. The content of useful’
information in most covariance matrices generally falls short of the indicated
size of the matrix. Procedures for collapsing matrices to manageable size are
under consideration within the nuclear data community. Therefore, there is
hope that this problem can be dealt with in a practical way.
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APPENDIX

This Appendix describes the FORTRAN-IV subroutines LLSF and NLSF which
are convenient for linear and non-linear least-squares analyses, respectively.

Linear Least-Squares Analysis (LLSF)

As indicated in Section VII of Ref. 1, Eost linear least-squares problems
can be reduced to finding a solution vector p, for the approximate equation

; < Z L i;a (A-l)
which minimizes chi-square given by

2 = G-iePt @loG—Zoﬁx (A.2)

where V., is the covariance matrix for the input values ;. The solution to this
problem is given by

- _T - -

vV = (AeVl5ieadl A.3

o ( y -1, (A.3)

3 - V eAlevled, (A.4)
P y

where V;l is the inverse of Vy and Vp is the covariance matrix for the solution

>
vector p.

A FORTRAN-IV subroutine‘named LLSF has been devloped to solve this general
problem. LLSF calls two additional subroutines entitled MATINV and JORDAN.
These three subroutines must appear in the following order in the program:

Main Program

LLSF
MATINV
JORDAN

MATINV inverts nonsingular matrices and JORDAN solves systems of linear equa-
tions by the Gauss—Jordan reduction method.

LLSF and its associated subroutines perform all aspects of the least
squares analysis problem. The procedure for using subroutine LLSF is:

DIMENSION Y(N1), EY(N1), CY(N1,N1), VY(NL,N1), VYI(NL,Nl), A(NL, ML),
P(M1), EP(M1), CP(ML,Ml), VP(ML,M1), VPI(ML,M), QN(NL),
WN(NL,N2), QM(ML), WM(M1,M2)
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CALL LLSF (IY, Y, EY, CY, VY, VYI, A, N, N1, N2, M, M1, M2, P, EP, CP, VP, VPI,
CHI2, CHI2NM, QN, WN, QM, WM)

There are two options for using LLSF, identified by the index IY. This index
controls which variables are considered input and which are considered output.
IY can be either 1 or 2; these two modes are defined in Table A.l.

The interpretation of the variables in LLSF is as follows:
Y: Vector ; from Eq. (A.1).

EY: Error vector Ey for ;.

CY: Correlation matrix E; for errors Ey'

VY: Covariance matrix Vy related to Ey and Ey as indicated by Egs. (34) and
(35) of Ref. 1.

VYI: Inverse matrix 6;1 from Eq. (A.2)

A: Matrix A from Eq. (A.1) with dimenéion N x M,

N: Dimension parameter for Y, EY(N) and CY, VY, VYI(N x N).

Nl1: Maximum size for N allowed in program.

N2: Always N1 + 1.

M: Dimension parameter for P, EP(M) and CP, VP, VPI(M x‘M). M < N is required.
Ml: Maximum size for M allowed in program.

M2: Always M1 + 1.

P: Solution vector ;.

EP: Error vector ﬁp for solution vector E.

CP: Correlation matrix Ep for errors ﬁp.

VP: Covariance matrix V_ for solution E related to Ep and EP as indicated by
Eqs. (34) and (35) of Ref. 1.

VPI: Inverse matrix V;l.

CHI2: x2 from Eq. (A.2).
CHI2NM: Normalized x2 computed by dividing x2 by (N - M).

Subroutine LLSF is protected against nonsingular matrices. If a matrix
which is being inverted is singular, subroutine LLSF directs the message
"NO INV" to be printed on Unit 1 and halts execution by means of the FORTRAN
statements
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WRITE(1,8)
8 FORMAT( 6HNO INV)
PAUSE

There is no unique way to approach the problem of non-linear least-squares
fitting. Also, given a set of initial conditions, there is no guarantee that
a particular algorithm will converge toward a solution. The FORTRAN-IV sub-
routine NLSF is based on an algorithm which involves linearization of the
fitting problem followed by iterative application of the linear least-squares
formalism embodied in subroutine LLSF discussed above. The approach is
discussed in the example appearing on p. 54 of Ref. 1. This algorithm does not
allow for constraints among the parameters, and no random steps are taken
during the search procedure. The user should begin with an initial set of
parameters which do not differ seriously from the anticipated solution. The
formalism is as follows:

Data points ;,with errors Ey and correlations Ey (alternatively, covariance

- > + +>
matrix Vy),are approximated by a function F(x, p). For y, there is a vector X 80

yy ¥ Flxy, P) (L = 1,n) (A.5)
and
= |
Py, ) % FOxys Bg) + 9 Bar O By ) (b, (MO
31

by Taylor's series expansion of F. Define

> > *>

s = p -~ PO: (A.7)

>

zi = yi - F(Xi ’ PO) 4 = l’n): (A.8)
then

> - > .

zxAhes, (A.9)
where

oF >
Aij - -BE (xi’ Po) ({1 =1,n; j = 1,m). (A.10)

As discussed in Ref. 1, the covariance matrix for ; is also Vy. The solution

for s proceeds in the usual way with
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Tos@eTre T, (A.11)
> = =T o1 >

§ = Vp o A" e V; ® z, (A.12)
P = B, +5, (A.13)
2 = 2T e Tle g, (A.14)
2} = G-KedHleTle(z-Lei). (4.15)

The fractional change, §, in x2 obtained by deriving a correction s to 30

to yleld a new parameter set B is given by
s = o2 - a2 ] . (4.16)
P P, P,

Iteration is continued until y2 appears to converge (small §). NLSF offers two
options:

1) Check xz after each iteration and stop search algorithm manually.

ii) 1Iterate automatically until the fractional change in x2(&) drops
below a preset level, or for a preset number of iteratioms (whichever
comes first).

Subroutine NLSF calls subroutine LLSF. The proper order for the sub-
routines in the program is as follows:

Main Program

NLSF
LLSF
MATINV
JORDAN
FCN |

The purpose of subroutine FCN will be clarified below. The procedure for using
subroutine NLSF is:

DIMENSION X(N1), Y(Nl), EY(Nl), CY(N1,N1), VY(N1,N1), VYI(N1,N1),A(N1,Ml),
P¢(M1), PI(M1), P(Ml), EP(ML), CP(M1,Ml), VP(M1,Ml), VPI(M1,Ml),
QN(N1), WN(N1,N2), QM(M1), WM(M1,M2), Z(N1), S(N1)

EXTERNAL FNC

CALL NLSF(IY, X, Y, EY, CY, VY, VYI, A, N, N1, N2, M, M1, M2, IA, K, KMAX,
DELTA, Py, PI, P, EP, CP, VP, VPI, CHI2$, CHI2, CHI2NM, QN, WN,
WM, Z, S, FCN)
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The index IY plays the same role in NLSF as it did in LLSF. The index IA
determines whether the iterative search proceeds in manual or automatic mode.
Thus:

IA = 1:

Subroutine prints results of each iteration on Unit 1 and asks user if he
wishes to continue or to terminate at the current iteration (selection
based on index IC).

IA = 2:

Subroutine continues automatically for a preset number of iterations KMAX
or until the fractional change in x2 (CHI2) drops below a preset level ¢
(DELTA), whichever occurs first.

The parameter IC allows for decision making in the manual search mode. 5o,

1 continue iteration,
IC =
2 terminate iteration and proceed toward end of subroutine NLSF.

Index IC is read from Unit 1 in Il format. The variables in the call statement
for NLSF are identified according to whether they represent input or output in
Table A.2.

The interpretation of the variables in NLSF is as follows: Y, EY, CY, VY,

VYI, A, P, EP, CP, VP, VPI, N, N1, N2, M, M1, M2, CHI2 and CHI2NM play the same
roles as they do in subroutine LLSF, as described above.

X: This is the array of Vvalues ; for calculation of the functional
values for F and its partial derivatives as indicated above.

K: Number of completed iterations at termination of the least-squares process.

KMAX: Limiting number of iterations to be performed during execution of least-
squares process (provides a cutof f criterion for iterations).

DELTA: Value 6 which represents a convergence criterion for x2 in least—squares
process.

P¢: Initial guess parameter array ; provided by user as the starting point
for the search. °

>
CHI2¢: x% value corresponding to initial parameter set p

FCN: Function F used in least-squares process. This function must be defined
in an EXTERNAL statement. FCN is the name of the external subroutine used
to calculate both F and its partial derivatives. The form of the call
statement in NLSF is:

CALL FCN(INDEX, J, X(I), PI, M, M1, FVALUE).
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1 calculate functional value for F,

INDEX: INDEX =
2 calculate partial derivative of F.

J: If INDEX = 2, calculate J-th partial derivative (BF/apJ).

X(I): Value x4 from array ¥ .

PI: Parameter array P at current iteration of least-squares process.
FVALUE: Returned value from subroutine FCN.

M and Ml are defined.above.

Since NLSF calls LLSF, the behavior is identical to LLSF when singular
matrices are encountered.

Source listings for NLSF, LLSF, MATINV and JORDAN are presented at the
end of the Appendix. :
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Table A.l
Input/Output Variable List for LLSF

1

2> 3323~

I I

I 0

I 0

0 I

o 0

I I

1 1

NL I 1
N2 I I
M I I
Ml I I
I 1

0 0

0 0

0 0

0 0

0 0

0 0

EP
cp

VPIL
CHI2
CHI2NM

QN These are working
WN arrays for LLSF
oM which the user
WM can ignore.

I = Input 0 = Output
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Table A.2
Input/Output Variable List for NLSF

IY 1 2

N1

N2

M

Ml

M2

1A

K
KMAX@
DELTAZ
)]

P

EP

cp

VP

QOO0 OOOHFMPFOMMPEMMHPHKHMOOKMMMHM
OO OOCOQCOOOHHMPMOHHPMMIPPHHHHOMHOOKHH

PI

QN These are working
WN space arrays for
0| NLSF which the
WM user can ignore.
A
S

Name of function

FCN defined in external
subroutine
I = Input 0 = Qutput

8 These are dunmy variables i1f IA = 1.
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SuB® JT1 . NLSPKIY:X.YOCY:CYJVY!VYloAoNldleZ»MoﬂluNﬁoIA.K.KMAX:DE L .
lLTAoFﬂoPloPoEPnCPoVPpVPIpCHIZODCHIZoCHIZMMuQNoWNnOM!W‘anS;FCN) noag
DIMENS Ik o X(dl)»Y(Nl)nEY(kl)pCY(ﬂlel),VY(Nlel)pVYl(11:N1).A(N1;M ol
7Il):Pu(bl)oPI(ﬂl]oP(Ml)'bp(ﬂl);Cf(ﬂlnhl)oVP(MloMl)tVPI(Mlo”l)pQN(Nl RN
C)l'ﬂ“l(-lau'a‘)'l.H(“].)okf.(MloP2))1(-‘31)05(-"11) 00T
GEe To(la8)01Y Ce0n

b Y 4 121, GV g
Ud 2 J=Llan R

é VY(IoJ)=CY(IoJ)':Y(I)“EY(J) bty
TGy T o Toll
S DO 4 [=1,4 HEVI I
4 EY(])=SARTCVY([W1)) pra
DJ D [=1,N oLl
D 5 J=1»n ' Gel4

> CY(I:J)=VY(1.J)/EY(I)/EY(J) nG135
& CALL WATXNV(UNOVYoVYIoWNnNTCSTvN:N1!H2) Lels
IF(NTEST,EGs1) Gy T2 9 ut1?

/ wRITE(1,48) CCis
B FIRMat(6ANd IHV) IR
PAUSE uL2¢

Y K=0 CCzs
Do 10 Jsi.,M tvee

v PICUYI=FLCY) ne23
L1 D@ 12 1=1.N - {82«
TALL FCau(Ll 0 XKUTX, Pl FL,F) cues
Z2(I)=sY () =F Shen

D4 12 J=i.M Gez7

CALL FCN(2sds X121 sPL el 0b)

bk

#}
]
N N
ew O

12 AC(1,J)=DF 1
CHIZ=Je0 i 3¢
DJ 13 Keslsw tudl
D4 13 Ki=1.N ' LGE2
19 CH12=CH12*Z(K2)’VY1(KZaKl)’z(Kl) cuZd
TF{K.5T,0) G2 16 14 US4
CHl2J4=Cr12 ' 3335
CHlz3=CrhI1Z L dA
TF OTEST=Ano CAle~CRI 20} /7LR ]S IR
CHIZ23=ChIZ2 U3l
G T:(1%,20)»1A 03
T5 WARITE(I, 1357 RK,Ch[Z,DTEDT Cu4l
16 FARMAT(/L1ORITERATIZ2N y127/7nCHI1Z2 = oElU-4r2X:8HDTEST s JELU,L4) ey
WRITZ(1,1€9) .42
ST FIRASTUIAFT —
W ITECL,17) (FLGY)ad=te™) Ay
17 F2RAAT(E51U.4) bl 33
[F{K eW,9) w2 T¢ 21 TS
WRITZ(1,18) ule?/
18 FARMAT(Z2r]C) 204
REAU(L,1Y/ 1L PR
19 FOARMAT(IL) ¢330
Gd Tz(21,20),1C N B
U TFCK, 3T T AND L, UTES T LT+ U=CTAT Lo T2 ch JLo¢
21 K=K+l Jus 3
IF(IA,EG.Z.AND-K.GT.KHAX) G2 Tk 2> U
Dd 2¢ [=1.M U-D2
DR 22 J=1.,M 24y3h
VPIC(14J)3040 nes7

CO 2< Ke=1sd
bd 22 Al=1.N
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2 VPl(I.J):vPI(I:u)#A(KZ'I)GVYI(K2,31)*A(KloJ) [ERE N
CALL MATIAVUUN s VP T s VP s Wy NTES Tsrerilsi 2) TPEN
IF(NTEST3EQ.U) a2 T3 7 Gusg
Dy 23 JzisM IUpd
STJY=4,¢C TTng
U4 2% wkd=1,H Jiras
D2 235 K2=Ll»N T AR
Jo 23 ni=1 ™ NSTYA

23 00U SS(UIFVPIUIASIBA(R2IRSIBVYT (A2, K1) #2 (A1) VR
D¢ 24 J=1.M 1Ay
PUIVEETCGY+3T(TD L7

24 PI(J)=P(Y) no7L
G2 To 1% Go72

&2 K=K=1 Lo/,

20 DY 27 J=1.M L274

€7 EP(J)=SGRT(VP(Jry)) 97
Dv 25 [=s1,™ L/
P2 28 J=1.M G077

20 CPUI»J)sVPLLl»Q)/ZERP(I)/EP(U) Lh7A
CHIZNMECATC/FLEATIN=M] 'RV A"
RETUFRYN Lvol
END Jlxg




-103-

RELYELE B LLSF([YoY.tYoCY!VY:VYIoA'Nlenﬂ?)”o”l,“?nP:EPpCSJVP,VPI

Ltiidy
LyCHIZ2/sCrI2NM N wNosQMy WH) nnng
DIME iSTew YL o r(NLID) s CY (N el) o VY (il aNT), VYTU(NLANL)JAC( L, ML) P (M [VIRRUR)
1) ,eFUHLY, 0P T v 1), VvPTMI L, NI, VPTI UL M1 GNUNL ) o VNCONT W N2 ) s GV UMY ) o Dule
2M(ML, .20 ' roNs
wd To(1,3)01Y IR
T 0J & (71,7 T
Do 2 J=1,. (b
2 VY(L,d)sCY(l, Jiny(l)aEY(J) L .9
Gd T. & Vot
S DY 4 [=1.N Jull
4 cY(1)=S3KRT(VY(141})) du1lz2
Dd 9 [=1.N wL13
0¥ 5 J=1.N )l
D CY(L,d)=vr (L J)/EY(TIX/EY (D) 01>
o CALL ~ATINVUSN» VY, VYT, aN,NTEST N, NL 02D JLin
IF{NTEST ,EQy1) Ge TQ 9 0ci7
7 WRITE(1,8) L6313
8 FoRMAT(OHND [HV) July
PAUSE Jgaed
9 D& 1y I=1,M 002%-
Dv- 10 J=1,M Jue2 ~
VPI([,4J)=0,0 uczg3
BDd 17 Kz=1.n nr2a
Do 1u K1l=1,A llug2
10 VPIC(L,u)=svPI(l Jd)eA (K221 )aVY]I(K2,K1)2A(K1,J) dLudo
CALL MATIaVCLria VP I s VP s, NTEST ) MyM1p112) 0L27
IF(NT&STIEQ.J) Go T@ 7 OUE:
DO 11 l=1.M nnz9y
P(1)=G,0 GLan
U9 11 Kd=1lsh LLdl
DA 11 K2=1,N uh32
D2 11 ni=z=1l,n N 333
T1 POTI=zP(I)+VP{] »KIVRA (K2, K3II®VYT{K2,K1) #Y (K1) Jude
DY 12 I=1.M TRERE
L2 EPCL)sSURTVRPOLLI)) UU35
Uo 135 [=1.,m a7
D2 13 JU=1.M fuls
19 CP(I,u)=vPULl,3)/EPCLY/ZEP(Y) 0G3E9
vd 14 T=],N Judl
anN(Idy=y (1) REVE ST
D4 14 Khi1i=1sM PRV
IE ARV M SR EDEY IS YRS R EALY ) URERES
Chl2=u,0 J344
D 13 wnZ2=1aN LY
U3 Io kKI=1,N L A5
19 CHIZ2=ChI2+AnN(AZ)evyl(K2sK1)®QL(KL) Su47
CHIZw=CH{Z2/FLUAT(N=M) Cuda
KEiTUAN Ju4
END JC=E0

0it51
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SUBP\"UTI"‘: V‘ATINV(BOJIQD JNTCSTD-!SO!‘ARAOI-ﬂAX) U:_ U‘
DIMENSILN B8(NARA) »D(NARA,NARA) )UCNVARASNARA) ,E(NARA, NMAX) nen2
IP = \b + 1 003
8IG = 0,0 Gr 4
Dy 533 T=1,N3 cLve
U¥d 5935 J=1,NS Jo -
AsD = Aud(LU[s,d)) S
IF(ALD=G13) 955,555,%54 QU
24 glG = ABL VR )
22 CINTIwnyE GRS
FACT = SIRT(BIG) Gilt
I = 1 Bl B4
L 1P U]=nd) 242022l [V
2 J =1 0Cz
3 IF(y=nwS) 424,06 13
4 K = 1 JC Lz
5 [F{k=isS) 64647 4 S
6 E(Jsx) = D(K,J)/FACT tiuls
K = f(.l yuly
Go T4 5 Lz
7 J = Jel gt
gd T4 3 L2z
g L =1 U0zl
9 IF(L=nNS) 10,1u014 LuZ4
LU TFUL=1) 11,133,113 [P
11 E(L.IP) = 0,44 Cigs
12 L = L+1 bGez?
G 19 9 Quen
18 E(L,IP) = 1,y Sz
Gd T4 12 2N
19 CALL JORUCAN(DIEINTESTINSINARA,NMAX) T3
IF(NTEST) 13,15216 guld
15 RETURN UMK
16 M = 1 » R
17 IF(M=1S) 14,18.19 ca3s
1o Q(l,4) = E(M,IP)/FACT 0r T4
M = el RS
GO T, 17 IRE
1Y 1 s 1«1 CLsy
Gd Tu 1 AR
zV RETUR‘!; Ny, 4
END Cly
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SUBRJU]T [ e JeROA(BrCr INUE 'Y PR tCcl
DIMENSIEN B(NARA);C(M&RA,NMAX) couz
K=1 gicd
1T (F(K=1) 212188 uuia

< lF(C(AnK)) 103,10 T

S L2K+1 - Qi fe

T JF (L= ) CYEIY RS Y

5 [F(ClLIK)) 7,047 (312

o Latrl NE
TGB T4 4 GLiv

/ M=1 tol1l

8 [F(M=y=1) 929,28 12
g BTHI=C(Ksi1) culs
C(KsA)=ClLAM) goL4
C(L.ﬁ):P(M) )
M=M+1 dulet

go Te 8 oc17

1U JsN+1 unig
T 1P CJ=n) R rEYTE Y fuly
12 C(K:J)=C(KuJ5/CGK.Ki 9024
Jsd=1 Gu2t

Gg T i1 el

18 I=1 Gted
14 IF(1=) 16+16,19 an24
15 K=K+1 P
G T4 1 gcze

16 IFCI=X) 18,17,18 ac27
17 1=T+1 Lude
G2 T 14 uh2y

1o llaNel cJddn
19 [F(Ti=K) 172040 Uu3lk
240 C(I.ll)=C(I.ll)‘C(IoK)’C(KnIl) 6532
11=11-1 PC33

G 14z 19 TRRY

21 [NDEx=0 o33
G T 23 6t 3o

z2 1nNuEX=1 VR
85 RETUR. 0J3n
END Q03

NOED




