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ABSTRACT

Some basic mathematical features of covariance matrices are
reviewed, particularly as they relate to the property of positive
definiteness. Physical implications of positive definiteness are also
discussed. Consideration is given to an examination of the origins of
non-positive definite matrices, to procedures which encourage the
generation of positive definite matrices and to the testing of
covariance matrices for positive definiteness. Attention is also given
to certain problems associated with the construction of covariance
matrices using information which is obtained from evaluated data files
recorded in the ENDF format. Examples are provided to illustrate key
points pertaining to each of the topic areas covered.
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I. INTRODUCTION

Covariance matrices have gained an increasingly prominent role in
nuclear data research since the 1970's, when Perey (e.g., Per75 and
Per78) first undertook to acquaint the community of investigators in
this field with the potential usefulness of these matrices, and the
various analytical techniques associated with them, for addressing
certain important technical issues which were being faced at that time.
Since Lhen considerable progress has been made in implementing
covariance matrix methods in various aspects of nuclear data research.
A great deal has been written aboul this subject, so an exhaustive
compilation of references would be too extensive to include in this
report. A few examples will suffice to illustrate the scope of work
which has been undertaken during this period. Guides have been prepared
to acquaint investigators in the field with the basic concepts (e.g.,
Per75, Per78, Al1180, Man81, Smi81). Covariance methodology has been put
to work in the important area of nuclear data evaluation (e.g., Sch78,
5580, Poe81, GD81, VT81, Fro86 and M+87). Considerable progress has
been made in the area of neutron dosimetry through the use of covariance
matrices in spectrum unfolding applications (e.g., Per77, Gre81, Smi82b,
Man87), and in reactor sensitivity studies (e.g., Pee82). Covariance
methods have also found their way into routine laboratory practice
(e.g., Smi82a, L+83 and $S85). Furthermore, it appears that a promising
area for the application of covariance methods is in the merging of
information from both experimental and theoretical origins (e.g., SG83
and KU87). In recognition of the importance of covariance matrices in
various nuclear data applications, recent evaluated data file formats
offer the possibility for inclusion of covariance information (e.g., for
ENDF/B-V (Kin79 and KM83) this appears in File 33).

It is essential to realize that covariance matrices are introduced
when statistical methods are employed in the modeling of physical
phenomena (Zeh70)--namely, in the area of uncertainty. For this reason
it is important to insure that the mathematical models which are
developed conform to physical reality (e.g., Mue79 and C+83). It is
intuitively evident that all sets of information with which one deals in
practical situations involve at least some random uncertainty (Hol86),
and, very likely, sources of systematic uncertainty as well. Realistic
covariance matrices should reflect this fact. Covariance matrices must,
therefore, be positive definite in order to represent uncertainties
which are positive, not vanishing or imaginary. In fact, it is evident
that investigators in this field have not always satisfied this
important physical requirement in their work with covariance matrices
(e.g., FH82, Man82, Nol87, Smi87b and ZN87). This issue is explored in
the present report. However, it should be appreciated that this is not
a trivial issue, but, rather, one with many ramifications., The intent
of this paper is to report upon the results of our investigation into a
few of these, and to share with the reader some of our thoughts on the
subject. We have appealed more to intuition than to rigor in this



exposition, hoping thereby to encourage the reader to be aware of the
general issues while, at the same time, realizing that matters of
specific interest must be investigated on a case-by-case basis. We have
endeavored to provide some insight and guidance on how to approach the
problem of @generating covariance matrices which model physical
uncertainty in a consistant fashion, and on how to recognize some of the
pitfalls which the reader may encounter either in his own work or in
dealing with material from the literature.

Section IT is devoted to a discussion of some relevant aspects of
the basic theory of matrices, but emphasis there is on consideration of
examples which demonstrate how covariance matrices can come to be
non-positive definite. The issues are examined from a geometrical point
of view, an approach which serves to emphasize the physical implications
of the formalism. Procedures which, by their very nature, tend to
encourage the production of covariance matrices that are positive
definite are discussed in Section III, and the importance of pursuing
such relatively "safe" analytical practices in nuclear data applications
is stressed there. The reader should recognize, however, that we have
encountered no foolproof rules to insure that manipulations involving
covariance matrices won't lead to non-positive definite behavior. A
closely related topic is that of managing covariance information for
parameters which are formulated in group structures, particularly as
regards the issue of collapsing, expanding, or merging of groups, or the
merging of data from group structures with non-compatible limits through
the use of union groups. A few comments are made in Section III
regarding this issue, but the technical problems are complex and there
are ambiguities which, we believe, will require further investigation,
since it is clearly a matter of considerable importance to the field of
reactor physics. Section IV deals with the matter of testing covariance
matrices for positive definiteness, a process which we have discovered
to be a very important one, in the light of the preceding comments. Two
approaches are presented, and the associated computer programs and
demonstrative examples are documented in greater detail in the appendix.
Finally, Section V briefly explores the issue of covariance matrices
and evaluated data files. Some problems that arise in trying to avoid
generating covariance matrices that are non-positive definite from File
33 information in the ENDF/B system (Kin79 and KM83) are discussed in
this context.



II. BASIC FORMALISM AND ORIGINS OF NON~POSITIVE DEFINITE MATRICES

A  fundamental consideration underlying the requirement that
matrices included for applications in nuclear data research be positive
definite is that they are intended to represent uncertainties in real
physical parameters, and these uncertainties must be positive
quantities. Zero errors are pointless in the physical world, as
discussed in Section I, and imaginary errors are totally unrealistic.

In this section we focus attention on this issue through the
examination of some properties of symmetric quadratic forms. Such
quadratic forms are most often encountered in error propagation
applications and in least Squares analyses. Let F be a scalar function
of a collection of n random variables which can be denoted collectively

by x. Suppose that we have a covariance matrix Vx representing the
uncertainties associated with these variables and their correlations.
We seek the uncertainty in the derived quantity F. In the following
development we shall demonstrate how the issue of the positive

definiteness of §x arises. There are several ways we can express the
uncertainty EF in the quantity F through utilization of quadratic forms.

They are all entirely equivalent, as discussed elsewhere, e.g., in
reports by Mannhart (Man81) and Smith (Smi81 and Smi87a). The following
error propagation formula summarizes this puint

[1] Q = E.” = (S E) c, (s E) = (51) Vo (SI) =T v, T.

+

Matrix multiplication is indicated in this expression, but not by means
of an explicit symbol. The symbol " + " is used to denote matrix
transposition. Ex is the vector of total errors in X; Gx is the

covariance matrix (as mentioned above); Cx is the corresponding

correlation matrix; I is a vector with all n elements equal to 1; T is a
vector with typical element equal to aF/axi; and S is an n x n matrix

with the following form:

[2]) s = aF/ax1
0 ces oF/ax
n



The information content of matrices S and T is identical. They are
commonly referred to as sensitivity matrices. The relationship

(31 Vyij = CijBxiByj
between some of these elements is a fundamental one, and it appears
often in the following discussion.

The reader is referred to treatises on matrices (e.g., Bro58) or
earlier discussions of the properties of nuclear data covariance
matrices (e.g., Man81 and Smi81) for tutorial material on the basic
mathematics. Some of the concepts of particular importance in the
present discussion are repeated here in order to clearly establish the

Lerminology. For example, as concerns the correlation matrix Ex values
for the elements Cxij must fall within the closed interval [-1.1]. The
significance of the various values of Cxij is as follows: = 1, complete

positive correlation; = 0, no correlation; = -1, complete negative
correlation (anticorrelation); > 0 but not equal to 1, partial
correlation in the positive sense; and < 0 but not equal to -1, partial
correlation in the negative sense (partial anticorrelation).

Eq. 1 can be rewritten without the use of matrix notation, as
follows:

n n
2
[4] Q. =E =z Z (dF/3x . )V_..(3F/3x.)
F F i=1 j=1 177 x1ij J
n n
=z Z (dF/3x.)E_.C_,.E .(3F/3x.).
i=1 j=1 i7" xi"xij 'xj J

Two other points to remember are that Vx and Ex are both symmetric

(i.e., V... =V . andC_..=C_. ) and that E_, = (v, )2
Xij xji xij xji xi xij
At this point we choose to introduce a vector model which we
believe will prove useful to the reader in helping to understand the

concepts under consideration. Let us consider a set of vectors €x1
(i=1,n), defined in an abstract space and having the property that their

magnitudes ¢ , = |e
£ xi | X F

i' = IaF/axilExi. Furthermore, let E_ be defined as

n
the sum of these vectors, namely, EF = Z € We now demonstrate that
i=1

the familiar quadratic form QF can be obtained from the expression
n n n

-— + -

z z exi ex..

i=1 i=1 i=1 j=1 J

~
9]
e
o
Ty
]
<28
It
—_
M S
(L}
Nt
—
™
o
Ii



k3 - *— " .
In order tu achieve this, we must interpret the expression exi exj as a

simple dot product of two vectors. From a rule of vector analysis, it
is evident that

-
. € . = € _.e .COS q,,
xi "xj xi " xj ij

(U]

[6] '
where ajj represents the "angle” between the two vectours Exj and ;xj in

the abstract space in which they are defined. The cosine function has
the property that -1 < cos ai. <1, just as does the correlation
J

coefficient Cx'j' For this reason it is reasonable to treat them as
i

equivalent, i.e., Cxij = CcOos aij' thereby verifying Eq. 5 through a

comparison with Eq. 4. In this model, strong correlation between the

uncertainties in x. and xj implies near colinearity between the (wo
i

vectors gi and €j which contain information concerning the total errors
and the sensitivity of the derived function F to the parameters xi and
xj. Analogously, small correlation implies near orthogonality, while
significant anticorrelation is manifested in near anti-colinearity of
the vectors in guestion.

We now turn our attention to determining those conditions where the
quadratic fornm QF’ discussed above, is positive, zero, or negative.

First, we note that each of the different matrix expressions for the
symmetric quadratic form considered above can be viewed as a specific
manifestation of the general quadratic form

n n

- —
7 =z Mz= 2 zZ z M, .z.,
(71 «Q AR

where Q is a scalar, M is an n X n symmetric matrix, and z is an n x 1
matrix (vector). The determinant det(M) = |ﬁ| is called the

discriminant of the quadratic form. The rank of the matrix M is called
the rank of the quadratic form. It gives information about the number
of independent variables involved.

In general, M will not be diagonal, but it is possible to transform
Eq. 7 into an equivalent expression, namely,



(8] Q =y

Here, D is a diagonal matrix with parameters Ai along the diagonal.
The Ai are called eigenvalues of the matrix M. These parameters

represent all the solutions to the equation det(M - A U) = 0. U is the
identity or unit matrix (an n x n matrix with ones along the diagonal

and zeros elsewhere). The conversion from M to D is accomplished by
what is known as an orthogonal transformation, using an orthogonal

matrix P, i.e.,

—_—

(9] D=pPHP-=-plxp.

Note that, for an othogonal matrix, the inverse exists and equals the

transpose of the matrix. The same matrix P defines the transformation

between 2z and y, i.e., z=17p y. Summarizing, we see from basic
properties of matrices that

(10 Q= zHz=(FNHFEY =y EHP)Y=7Dy.

The orthogonal matrix P is formed using the normalized eigenvectors of M
as column vectors, a procedure which will be demonstrated later in this
section. Therefore, to diagonalize a matrix it is enough to know the
eigenvalues of that matrix. The Method of Lagrange Reduction (e.g.,
Ayr62 and Bra63) is often employed for this purpose in computer
routines.

In Eq. 8, the number p of positive eigenvalues is called the index

of the quadratic form Q. If we denote the rank of M by r, then (n-r) of
the eigenvalues are zero and (r-p} are negative. The usual
classification of quadratic forms is given in Table 1, below (Ayré62):

Table 1
p r Classification
n n Positive definite
r r<n Positive
0 n Negative definite
0 r<n Negative
<r r <n Indefinite



It is stated in most textbooks on matrices that a matrix M is
positive definite if and only if every quadratic form as expressed in

Eq. 7 is positive for every non-trivial (non-zero) vector z. It is
evident from Eq. 8 that Q is indeed positive so long as each eigenvalue

Ai > 0 (i=1,n), since we assume that transformation from a non-trivial 2z

leads to a corresponding non-trivial }. In summary, a matrix M is
positive definite if and only if it has rank equal to n, and all its
eigenvalues are positive. In the context of the present discussion, the
quadratic form is identified with the square of the error in the derived
scalar quantity F. In order that this error be physically reasonable
(i.e., non-zero real numbers), the covariance matrix for the set of

variables x must be positive definite. We noted earlier that this
specific quadratic form QF can be expressed in various ways. In

particular, referring to Eq. 1, if we let Ex =S Ex' we have

__+— -
{11] QF =€, Cx €.
Since this is a perfectly reasonable expression for this quadratic form,
we are led to the conclusion that the correlation matrix must pass the
test for positive definiteness as well as the full covariance matrix.
The same can be said for the relative covariance matrix (e.g., see
Smis81).

We turn next to an example which will demonstrate, in the simplest
possible terms, all of the concepts developed above.

Here we examine the error in the scalar quantity formed by summing
two cross sections. This example is not entirely a hypothetical one
since, in nuclear data research, one is quite often interested in sums
of cross sections, e.g., the neutron total cross section is the sum of
the partial cross sections associated with all the open interaction
channels for a neutron incident upon the nucleus in question.

Suppose that o1 and 02 are the two available cross sections. For

convenience we will denote as oT the sum, namely OT = o1 + 02. Rather

than working with a given covariance matrix Vo for these two cross

sections, we choose to actually construct this matrix from more
fundamental considerations. Table 2, below, provides the information
needed for this purpose. For simplicity we assume here that the error
in each cross section arises from two sources. The first is a 1% random
error while the second is a 2%, fully-correlated systematic error



affecting both values. The reader should be aware, however, that this
is not the most general case one might encounter. Indeed, in practice
one is normally forced to examine several sources of random
(uncorrelated) and systematic (correlated) error, and treatment of
partial correlations for some of these components may be necesgsary
(Smi87a).

Iable 2
Parameter Rand. Error Syst. Error Total Error
o] 0.01c 0.020 [(0.010 )2 + (0.020 )2]1/2
1 1 1 1 1
2 2.1/2
02 0.0102 0.0202‘ [(0.0102) + (0.0202) ]
We denote the total errors in o1 and 02 as Eol and 502'

respectively (they form the vector Eo)' Then, according to Eq. 1, the

error ET in a.r can be obtained, e.g., from the quadratic form
2 SENtE (2 & .
ET = (S Eo) Co (S Eo)' with
Co= [1 0.8 S = 1 0 SE°=EG= I-:01
| 0.8 1 0 i E02

Simple matrix algebra leads to the explicit algebraic expression,
2 2 2

ET = Eol + an + 2(0.8)501502,

vields the desired formula for the error in the total cross section. It

is instructive to produce the diagonalized version of this quadratic

form, i.e., as defined in Eq. 8. To accomplish this we need to solve

for the quadratic form, and thereby

the equation det(ﬁo -A ﬁ) = 0 for the roots :\1 and 4\2. Note that U in

this instance is a 2 x 2 unit matrix. In algebraic form the equation
2

becomes A~ - 24 + 0.36 = 0, and it has the roots /\1 = 0.2 and '\2 = 1.8,

These are the eigenvalues of Eo and this matrix is clearly positive

definite. We are thus led to the diagonalized version of the quadratic

form, Emz = 0.2y 2 + 1.8y 2
T 1 2



Next we Lurn to the matter of computing the normalized eigenveclors

of Ca' since we have need of them in determining the orthogonal
transformation matrix P which appears in Fgs. 9 and 10. These
eigenvectors are denoted by 51 and 52 for convenience. They are
obtained by finding the soJutions of the matrix equations
C -A_U)a. =0 C.-A_.U)a. =0 ich a_'a, = &
(Co 1 U) a1 0 and (qg 2 U) 42 0 for whic a1 a1 1  and
52*52 = i, with 0 representing a vector with all elements equal to zero.

The results are

el @l - @] h - [ a, a, ]
_(2)—1/2 (2)-1/2

From this we conclude that, in the diagonal version of the quadratic
_ ~-1/2 _ _ -1/2 ‘o
form (Eq. 8), vy = (2) (E01 Ecz) and v, = (2) (qol + Qoa). This

concludes our detailed analysis of this particular problem.

We can obtain some feel for the meaning of eigenvalues which are
positive, negative, or zero by appealing to analytic geometry. To
simplify matters, we choose to limit the following discussion to three
dimensions. The diagonalized quadratic form given in Eq. 8 in this
special case becomes

2 2 2 2
(121 Q = p" = Ay T A, Tt ALyt

The shape of the surface generated by considering all values of the

vector y that satisfy Eq. 12 depends upon the nature of the eigenvalues.
We examine several possibilities below. First, it should be noted that

Q > 0 is assumed; otherwise, the surfaces would be degenerate. The
parameter p serves to define the scale or extent of the surface, so we
tacitly assume that p > 0 as well. For example, if Al = A2 = As =1,
the surface is a spherical shell with radius p. For convenience, we

assume in the following discussion that Q has a particular fixed value.
Associated with this particular value of Q is a specific geometric
surface. Consideration of the positive definiteness of the matrix in
question is, of course, not tied to any particular value of Q (or
equivalently, p) since any positive number may be considered. A family
of surfaces therefore exists corresponding to the entire set of positive
real values which Q can assume. The shapes of the surfaces described
below depend on the values of Q and the eigenvalues but not on the
choice of coordinate system, since the transformation which diagonalized
the matrix and led to Eg. 12 is an orthogonal one. It is well known
that an orthogonal transformation can be interpreted geometrically as a
rotation of coordinates without any further change in the underlying
metric of the parameter space.
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The first case to be considered is that for which all of the
eigenvalues are positive (and the associated matrix is positive
definite). 1In general the surface is an ellipsoid, as shown in Fig. 1.

Equal eigenvalues, as indicated above, imply that the solution vectors ;
map out a spherical shell. For such a surface, any observer leaving the
origin will not be able to find any way to "escape” the region without
penetrating this surface at some point (it is therefore a completely
closed surface).

If one root is negative, for instance Aa. then the matrix is

non-positive definite and the surface represented by Eq. 12 is a
hyperboloid with one sheet, as shown in Fig. 2. It is tempting to refer
to this shape in contemporary terms as a "cooling tower”! In this case

the axis Vg does not intercept the surface at any real points, i.e., the

surface is indefinite in that direction. An observer leaving the origin
will be able to escape the region without intercepting the surface so
long as he proceeds in any direction falling within the confines of two
oppositely oriented elliptic cones, each with its apex at the origin and
symmetrically positioned about the U axis (a partially open surface).

As a mnemonic device, it is convenient to equate the possibility for
escape from the region with non-positive definiteness of the matrix
under consideration.

If one eigenvalue is positive, for instance, Al, and the other two

are negative, the matrix is non-positive definite and the surface
represented by Eq. 12 is a hyperboloid with two sheets, as shown in
Fig. 3. The conic sections generated by intercepting planes parallel to
the two principal planes vV, and v,"v, are hyperbolas, while those

parallel to the principal plane‘yz—y3 are ellipses. An observer leaving

the origin now has a wide range of opportunities for escaping the region
without intercepting the surface; in fact, he will intercept the surface
only when his departure is confined to a range of directions defined by
two elliptic cones, much as described in the preceding paragraph.

If all three eigenvalues are negative, it is clear that no real
vectors § exist which can satisfy Eq. 12, so no surface exists for
discussion.

If two eigenvalues are positive and the third, for instance, As,ﬂis

zero, then the surface generated by Eq. 12 is an elliptic cylinder, as
shown in Fig. 4. Again the matrix is non-positive definite, and the
observer is able to escape the region without intercepting the surface.
However, upon careful inspection it becomes evident that escape is
Possible only if the observer proceeds exactly along the Vg axis, either

in the positive or negative direction! Progress in any other direction
wWill eventually lead to interception of the surface.

11



Figure i: Ellipsoid
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If one eigenvalue, for instance, As, is zero and the other two have
opposite signs,,.e.g. Az < 0 and Al > 0, then the matrix is non-positive
definite and the surface generated by Eq. 12 is a hyperbolic cylinder,
as shown in Fig. 5. Escape from the origin without intercepting this

surface must be via directions defined by a solid wedge-shaped region.

Finally, if two eigenvalues are zero and the third, say Al, is
positive, then the surface consists of two planes parallel to the
principal yz—y3 plane, as shown in Fig. 6. Escape from the origin can be

achieved only in directions confined to the yz—y3 plane.

It is evident from the preceding discussion that the nature of the

eigenvalues of a matrix uniquely establishes the range of real vectors §
which are able to satisfy the diagonal quadratic form, as indicated in
Eq. 8. If the matrix is positive definite and all the eigenvalues are
positive, the family of real solution vectors associated with a
particular positive value p > 0 forms a closed surface and thus is
"complete.” If one of more of the eigenvalues is zero, no restrictions

are placed on the corresponding components of §, so the family of
solution vectors is “open" or "incomplete”. Finally, if negative

eigenvalues are present, the family of real vectors ; which satisfy the
quadratic form for a particular p > 0 maps an open surface and thus is
"indefinite". There is also inconsistency since, given certain real

values for some of the components of §, one must resort to imaginary
values for other components corresponding to the negative eigenvalues in
order to satisfy Eq. 8.

We now illustrate the preceding discussion through examination of

some specific 3 x 3 correlation matrices C. In each instance we first
derive the eigenvalues and then deal solely with the diagonal quadratic
form, i.e., Eq. 12.

The first matrix we consider is

C = 1 0 0
0 1 0
0 0 1

14



There is no need to transform this matrix since it already exists in
diagonal form. All three eigenvalues are unity and the matrix is

positive definite. Eq. 12 thus takes the form p2 = yl2 + yz2 + yaz. For

a specific value of p, the solution vectors y all lie on the surface of
a sphere with radius p, a special case of the surface shown in Fig. 1.
This matrix provides a generic model for error propagation problems in
which a single parameter is derived as a scalar function of three
independent random variables.

The second matrix we consider is

C = 1 1 1

1 1 1

1 1 1
The eigenvalues of this matrix are Al = 3, Az = A3 =0, 8o it |is
non-positive definite. Eq. 12 assumes the form p2 = 3y12. The
corresponding surface appears as shown 1in Fig. 6. This wmatrix

represents physical problems where all three random variables are fully
correlated, with two out of the three variables providing redundant
information. In spite of the presence of three parameters, only one
distinct piece of information is available.

The third matrix we consider is

C = 1 0 1

0 1 0

1 0 1
The eigenvalues of this matrix are Al = 2, Az = 1 and A3 = 0, so it is
non-positive definite. Eq. 12 assumes the form p2 = 2y12 + y22. The
corresponding surface appears as shown in Fig. 4. This matrix

represents physical problems where two out of the three random variables
are fully correlated, with one of the variables providing redundant
information. In spite of the presence of three parameters, only two
distinct pieces of information are available.

Finally, the fourth matrix we consider is

15



0 1 1

1 1 1
The eigenvalues of this matrix are Al =1, A2 = 2.4142 and A3 = -0.4142,
so it is npon-positive definite. Eq. 12 assumes the form

2 2

p = vy, ¢ 2.4142y22 - 0.4142y32. The corresponding surface appears as
shown in Fig. 2. This matrix cannot represent any real physical
situation, since an imaginary error is implied. In fact, a serious

inconsistency is indicated. This is quite apparent if we reflect upon
the nature of the indicated correlation pattern. It is stated that the
first random variable is fully correlated to the third, and the second
is fully correlated to the third as well. However, there is no
correlation indicated between the first and second variables. It is a
clear violation of common sense to suppose that there can exist a strong
correlation between two variables and a third but no correlation between
the first two. The existence of an imaginary eigenvalue signals that
such an inconsistency is present.

The preceding example shows us that matrices can be non-positive
definite as a result of either i) redundancy of the information content,
ii) linconsistency of the information content, or iii) both of the
preceding causes. When a matrix is found to be non-positive definite,
it is worthwhile to seek the fundamental source of the problenm;
computation of the eigenvalues is one of the best ways to accomplish
this task.

Another procedure available for the investigation of a covariance
matrix is computation of its determinant. It happens that when all the
eigenvalues are positive and the matrix is therefore positive definite,
the determinant is also positive. It is never possible for the
determinant to be negative and the matrix to be positive definite.
However, a positive determinant does not necessarily imply that the
matrix is indeed positive definite! This important point is made
evident in the following discussion. Orthogonal transformations
preserve the determinant of a matrix. Since a symmetric covariance
matrix can be converted to diagonal form by an orthogonal trans-
formation, the determinant of the matrix always equals the product of
its eigenvalues. Thus, a matrix with non-zero eigenvalues can have an
even number of negative eigenvalues and still have a positive
determinant, though it is certainly non-positive definite. In any
event, a negative determinant is a sure signal of inconsistency as well
as non-positive definiteness, since then at least one of the eigenvalues
has to be negative. When one or more of the eigenvalues is zero, the
matrix is not only non-positive definite, it is also singular and some
degree of redundancy is indicated. However, the extent of the
singularity (number of zero eigenvalues) is not defined by this
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consideration. In summary, the determinant of a covariance matrix
provides some useful information about the nature of the corresponding
random variables, but jits computation is not a substitute for more
detailed examination of the matrix properties.

Another useful method for determining whether a matrix is positive
definite is to examine the principal minors. A matrix can be said to be
positive definite if and only if every principal minor is positive. A
minor is the determinant of a sub-matrix. A minor is principal if the
sub-matrix is formed by deleting certain rows and the corresponding
numbered columns. There are n + 1 leading principle minors for an n x n

matrix with elements "ij' They are the values pi = det(;i), where the

j are sub-matrices defined as follows:

21 22 nl """ "nn

Without going into further detail, we now state an important theorem of
matrices which is very useful in the present context: A real symmetric
matrix is positive definite if and only if its rank r equals the
dimension n of the matrix and all its leading principal minors are
positive. An alternate test for positive definiteness therefore
involves computation of all the leading principal minors. The advantage
to this method of determining whether a matrix is positive definite or
not is that it is generally much faster than alternative approaches. In
computer algorithms one begins by calculating all the low-order minors
first. If one encounters a zero or negative principal minor, the matrix
is automatically non-positive definite and there is no further need for
computation. The method. also indicates, in a crude way, the point in
the matrix where a problem is first encountered. This issue is
discussed further in Section IV and in the Appendix. A limitation of
this approach is that it does not provide as much detailed information
about the matrix as one would usually like to have. This issue is
discussed further, below, but first we consider another example.

Example

Table 3 1lists neutron cross section values and uncertainties
corresponding to a hypothetical experiment performed at six different
energies.
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Table 2

*
Cross section (mb) Systematic error (mb) Total error (mb)

1) 10.0 0.1 0.1 ( 1%)
2) 7.5 0.075 0.3 ( 4%)
3) 10.0 0.1 0.6 { 6%)
4) 100.0 1.0 1.0 ( 1%)
5) 15.0 0.15 1.5 (10%)
6) 20.0 0.2 2.4 (12%)

*
1% fully-correlated systematic error.

From inspection of the table it is clear that the random error is
assumed to be zero for the first and fourth data points. The
correlation matrix can be readily computed from information in Table 3.
The lower triangle of this matrix is

1.000

0.250 1.000

0.166 0.041 1.000

1.000 0.250 0.166 1.000

0.100 0.025 0.016 0.100 1.000

0.083 0.021 0.014 0.083 0.008 1.000

The determinant of this matrix is zero, so it is non-positive definite.
This is also readily apparent from an inspection, since column 1 of the
matrix equals column 4. If row 2 and row 4 are interchanged as well as
column 2 and column 4, the third leading principal minor is zero, which
also signals that the matrix is non-positive definite. The procedure of
interchanging rows and corresponding columns is justified from physical
considerations, since we are always free to relabel any of the data
points. Computation of the eigenvalues of this matrix indicates that
one of them is zero, also indicating non-positive definiteness. The
existence of off-diagonal elements of a correlation matrix equal to t 1
indicates full correlation (or anti-correlation) and thus redundancy,
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with resulting non-positive definiteness. The presence of correlation
coefficients with magnitudes exceeding wunity is unrealistic, as
discussed earlier in the context of a vector model. Nevertheless, such
parameters may show up in the matrix as the result of typographical
errors. When this happens, negative eigenvalues and negative principal
minors will be encountered, thereby signaling not only non-positive
definiteness but also inconsistency as well.

There exist two general rules which are very useful in this
context. The first rule is called Descartes' Rule of Sign. It states
that for a real quadratic form associated with a particular matrix, the
index of that form, and thus the number of positive eigenvalues, is
exactly equal to the number of variations in sign of the terms of the
characteristic equation used to solve for the eigenvalues (as counted
from the first through the 1last term, excluding zero terms, of the
characteristic equation when it is written out explicitly). The second
rule is called Gundelfinger's Rule. It states that the number of
positive eigenvalues of a matrix is precisely the number of permanences
(instances in which there is no change) of sign for the sequence of
leading principal minors, 1listed in ascending order. Likewise, the
number of negative eigenvalues is precisely the number of variations of
sign for this sequence. The following example illustrates the use of
these rules. '

Ml = I1-1 -2 11 Mz =15 -2 -2 M3 = 7 -2 0
-2 2 -2 -2 2 -4 -2 6 -2
1 -2 -1 o -2 -4 2 0 -2 5

The validity‘of Descartes' Rule and Gundelfinger's Rule is demonstrated
below: ”

Matrix ﬁl -

Leading principal minors: pm_ =1, p, = -1, H, = -6, u_ = 186,
0 1 2 3

(1 sign permanence and 2 sign variations).

Characteristic equation: A3 - 12A - 16 = 0,
(1 sign variation)

Eigenvalues: Al = 4, A2 =

(1 positive eigenvalue and 2 negative eigenvalues).
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Matrix M_ --
atrix Ma

Leading principal minors: ”0 =1, “1 = 5, pz = 14, ”3 = -108,

(2 sign permanences and 1 sign variation).

Characteristic equation: As - 9A2 + 108 = 0,

(2 sign variations)

E € M4 = ='A =--'
igenvalues Al 6, Aa 6 3 3

(2 positive eigenvalues and 1 negative eigenvalue).

Matrix Ma -
Leading principal minors: po =1, ”1 =17, ”2 = 38, My = 162,

(3 sign permanences and no sign variations).

Characteristic equation: Aa - 18A2 + 994 - 162 = 0,

(3 sign variations)

Eigenvalues: Al = 3, Aa 3

(3 positive eigenvalues and no negative eigenvalues).

=6, A, =9,

In the preceding discussion it has been stressed that there are two
fundamentally distinct manifestations of non-positive definiteness. One
has to do with indefiniteness as reflected by the existence of zero
eigenvalues, while the other involves inconsistency as reflected by
negative eigenvalues. We now examine further the issue of
inconsistency. In the following example, it is demonstrated for a 3 x 3
correlation matrix that fixing the values of any two distinct
off-diagonal correlation coefficients places limitations on the values
which can be assumed by the third, if the matrix is to be positive
definite.

Let C be a 3 x 3 correlation matrix. The form of the matrix is

c- 1 Ci2  Ci3
Ci2 1 Ca3
Cis  Cp3 1
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C C and 023 are the only distinct off-diagonal coefficients, owing

12’ "13

to the inherent Symmetry of correlation matrices. The determinant of ¢
= ' 2 2 2

is given by det(C) =1 + 2C12C13C23 - C12 - 013 - C23 . One can now

study the behavior of any one correlation coefficient, say x = C23. as a

function of the remaining two. The requirement for positive definite-

ness is that det(é) > 0. Thus, those values of x for which
2 2 2 .
x (2012013)x + (C12 + 013 1) 20 1lead to non-positive definite

matrices. 1In Table 4, below, the range of unacceptable values of x js
indicated for Sseveral choices of the remaining two coefficients,

Table 4

*
Ci2 €13 X = Cag
0.9 0.9 -1 £ x <0.62 and x = 1
0.1 0.9 0.524 < x <1 and -1 < X £ -0.344
0.1 0.1 -1 £ x <-0.98 and x = 1
0.5 0.5 -1 £x < -0.5and x = 1
0.3 0.5 0.97 = x <1 and -1 < x< -0.676
0.9 0.8 0.981 £ x <1 and -1 < x £ 0.458

Values of x = 023 which lead to a non-positive definite matrix.

It is evident that whenever any two - correlation coefficients are
relatively large, there js only a very limited range allowed for the
third coefficient jir the matrix is to be positive definite.



We examine this point further by considering a 3 x 3 correlation

matrix which is formed in the following special way. Suppose we have
three random variables. Each is affected by random error and a single
source of fully correlated error. The correlated errors are el, e2, and
€y, respectively, while the corresponding total errors are El’ Ez. and
Es. The correlation coefficients are given by the formulas C12 = Xy,
013 = xz and C23 = yz, where x = eI/EI' y = e2/E2 and z = e3/ES. The

following example demonstrates how an inconsistency can be detected by
examining these formulas

Example

Suppose that one assumes, for example, that C12 = 0.9 and
C13 =0.9. Is C23 = 0.4 an acceptable correlation? Not according to
Table 4! In fact, if we substitute these values into the consistency

equations, above, that involve the ratios x, y, and z, we are led to the
result x = 1.423 and y = z_= 0.6324. The value of x > 1 is unrealistic.
It is not possible for the systematic error to exceed the total error
unless the random error is taken to be imaginary.

The next example demonstrates the effect of an inconsistency which
is introduced by a typographical error.

Consider the following correlation matrix (only the lower triangle
is shown):

1.0000

0.2475 1.0000

0.1650 0.0416 1.0000

0.9800 0.2475 0.1650 1.0000

0.0990 0.0250 0.0166 0.0990 1.0000

0.0825 0.0208 0.0139 0.0825 0.0083 1.0000
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This matrix is positive definite. Suppose, however, that due to a
typographical error, the underlined coefficient is set equal to 0.8475.
The matrix now has a negative leading principal minor and therefore is
non-positive definite. How do we go about tracing the origins of this
problem once we know that the whole matrix is non-positive definite?
The process of computing leading principal minors from the smallest to
the largest leads us in a straightforward way to conclude that there is
a problem on row 4 of this matrix. Further examination produces the
result that the 3 x 3 correlation sub-matrix involving only the first,
second, and fourth random variables is also a non-positive definite
matrix. We therefore reach the conclusion that the inconsistency is
being caused by either the first or second coefficient {or both) in the
fourth row. We have found that the process of examining the positive
definiteness of 3 x 3 correlation sub-matrices is a very useful one for
dealing with this type of problem.

We have observed that inconsistencies involving the correlation
coefficients for covariance matrices of multigroup cross sections are
quite common in the literature. For example, the correlation matrix for

the 23Na(n.v) reaction cross section reported by Noltenius (Nol87) is
not only non-positive definite, but it also exhibits a number of
inconsistencies of the nature described above. The same can be said for
the matrices provided by Mannhart (Man82) and by van der Borg et al

(B+80) for the 58Ni(n.p) reaction. On the other hand, the covariance
matrix for the 27-group cross section set provided by Gerstl et al

(G+77) for the 58Ni(n,p) reaction does appear to be positive definite
and thus free of inconsistencies.

One of the conclusions from the REAL-84 exercise (ZN87) is that the
presence of non-positive definite covariance matrices, and the existence
of inconsistencies leading to negative eigenvalues, are among the more
serious problems encountered in this interlaboratory investigation into
the methodologies. of neutron dosimetry in reactors. Such deficiencies
appear to be traceable to shortcomings in the evaluated files as well as
to the widespread use of mathematically inconsistent methods in the
analysis of dosimetry data.
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IIT. METHODS TC ENCOURAGE GENERATION OF
POSITIVE DEFINITE MATRICES

As a rule, the various situations in which one is confronted with
the generation of covariance matrices tend to fall into four broad
categories: i) postulation of a priori matrices which are intended to
serve as a basis for subsequent analyses of a Bayesian nature, ii)
development of covariance matrices for sets of experimental parameters
which are deduced from measurements in the laboratory, iii) development
of covariance matrices for sets of parameters derived via functional

information exists (e.g., error propagation), and iv) the generation of
covariance information as the product of least-squares analyses. These
broad categories will serve as the framework for the following
discussion. In our experience, certain analytical practices involving
Covariance matrices appear more often than not to result in the
development of matrices which are positive definite. In this section we
discuss some of those procedures which appear to be proper and
relatively “safe" as regards the generation and manipulation of
Covariance matrices. Much of this material has been documented
elsewhere, so emphasis here is on summarizing the main ideas and
providing some examples.

The development of a covariance matrix intended to provide a
mathematical representation of assumed uncertainty for an a priori set
of information (i.e., a summary of what is known prior to the conduct of
a particular investigation) quite often involves considerable
Ssubjectivity. Documentation of uncertainties in the literature has been
notoriously deficient prior to recent times and still leaves much to be
desired in most instances. There appears to be a fixation on the
reporting of total errors, with little concern for component errors or
correlations. Whenever it becomes hecessary to generate a covariance
matrix for a set of parameters from existing information in the
literature, we have found that it is essential that an attempt be made
to break down the total errors into distinct components, subsequently
examining the possible correlations at the component-error level
(micro—correlations), as discussed in some detail by Smith (Smi87a),
rather than attempting to estimate correlations between the total errors
directly (macro—correlations). Covariance matrices derived in this
manner are far more likely to be positive definite. The same
consideration arises when an investigator examines his own data in order
to develop a covariance matrix representing the significant
uncertainties in his work. The situation ought to be better in this
instance, however, because in principle an experimenter is better
equipped to examine and summarize the sources of error in his work than
any other individual. Nevertheless, anyone who is not prepared to
implement the requisite methodology would serve the interests of the
community best by merely listing the component errors and providing some
information from which others who are more experienced in statistical
analysis can base estimates of the correlations and thereby produce the
desired covariance matrix.
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Covariance matrices which are generated through the explicit
consideration of a collection of parameters whose uncertainties are to
be represented, as discussed in the preceding paragraph, should only be
created after carefully reviewing all the distinct factors which
contribute to the overall uncertainty, determining the magnitudes of the
partial errors, estimating in a reasonable way their correlations, and
then combining this information to form the covariance matrix as briefly
outlined below. Ideally, one ought to be able to describe any complex
process in terms of a collection of mutually independent parameters
(canonical parameters), but in practice this is rarely possible nor does
it turn out that it is necessary. This issue has been discussed in some
detail in the literature (Smi87a), so it will not be pursued here in any
depth. Summarizing briefly, we suppose that there are L distinct
sources of error which determine the overall uncertainties for a

collection of n quantities x = (X%, ... .x_ ). Let e,, represent the

partial error in xi corresponding to attribute I, and let EI be the

correlation matrix corresponding to these partial errors (Clij is a

typical element) as they apply to all the components of x. Then, the
covariance matrix which is applicable to this set of quantities is
formed of elements Vij calculated using the expression

L
[13] vij _lfleilejlclij'
Covariance matrices generated in this fashion tend to be positive
definite so long as the partial errors and their assumed correlations
are physically reasonable. Generally, several distinct sources of error
need to be considered (L > 1), so even the presence of strong
correlations (up to 100%) in some of the partial errors will probably
not lead to matrices which are non-positive definite. As mentioned in
Section I, no values among any set of parameters can ever be assumed to
be entirely free of random error, nor should the approximation be made
that the random error is negligible in the presence of much larger
systematic error components. To do so is to invite the development of a
non-positive definite matrix. The following example will serve to
illustrate this point.

Suppose that we have two cross section values in a set. For
simplicity, we assume that they are affected by only two sources of
error, namely a small random error and a much larger common systematic
error (perhaps due to a common detector calibration) which is
100%-correlated. This systematic error is assumed to be 10%, while the
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random errors are only 0.5% and 0.3% for the first and second values,
respectively. The total errors to six significant figures are thus
10.0125% and 10.0045% for the first and second points, respectively.
The relative covariance matrix for this data set is therefore

0.010025 0.01
0.01 0.010009

This matrix is positive definite. Suppose, however, that we had decided
that the random errors are so small in comparison to the systematic
error that they could be neglected in considering the total error. From
all external appearances, nothing would seem to be significantly
affected by assuming a total error of 10% for each point with 100%
correlation. When this assumption is implemented, the relative
covariance matrix becomes

0.01 0.01
0.01 0.01

This matrix is obviously non-positive definite. Clearly, inclusion of
the small random errors is necessary to preserve the physical integrity
of the matrix representation of uncertainty.

Another broad category of problems in which covariance matrices
arise is in the transformation of variables. Suppose that we possess a

set of variables x and a pogsitive definite covariance matrix Vx which
represents the corresponding uncertainties. We wish to transform to
another set of variables § and to obtain the appropriate covariance
matrix Vy for this set. The procedure is straightforward and is widely
documented (e.g., Smi87c). Very briefly, the transformation is

accomplished with a matrix T called the transformation matrix, as
discussed in Section II for the case of a scalar function, in accordance

with the expression Vy = T+VXT (the law of error propagation). This
process tends to lead to the generation of a positive definite

matrix Vy. so long as the transformation does not introduce redundancy.

If the dimension of x is n, we have rank n for the primary available
information. If the dimension of the set § exceeds n then the matrix Vy

will be non-positive definite, since the rank of the matrix, which
reflects the true scope of the available distinct information, cannot

exceed n. If the dimension of § is less than or equal to n, most

transformations of practical interest result in Gy being positive
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definite, but it should always be tested, e.g., as described in Section
IV. The following very simple example will serve to illustrate this

concept.

Let (xl.xz) be a pair of values with a 5% common systematic error

(100% correlated) and 2% and 3% random errors, respectively. For
convenience, assume that both 3 and x2 are equal to 1. The covariance

matrix and relative covariance matrix are therefore both equal to
0.0029 0.0025
0.0025 0.0034 ,

and this matrix is clearly positive definite. First, consider the

transformation y1 = x1 + 0'.1x2 and y2 = x1 - 0.1x2. Thus yl = 1.1 and

y2 = 0.9. Following the law of error propagation, we obtain for Vy the

matrix
0.0113 -0.00005
-0.00005 0.000013

This matrix is positive definite. Suppose, however, that we had made
the assumption that y1 = y2 = x1+ xz; then both of these derived values

equal 2. Following the same procedure, we obtain for Vy the matrix

0.0113 0.0113
0.0113 0.0113

This matrix is clearly non-positive definite. The information contained

in y in this instance is redundant.

The first practical application of random-variable transformation
to be discussed here is that of averaging experimental data. Suppose
that an experiment has been performed to measure the differential cross
Section for a neutron-induced reaction at several incident energies.
Any cautious experimenter will probably perform several measurements at
each of these energies, varying the experimental procedure somewhat on

27



each occasion to search for possible sources of systematic error. When
reporting the final results, however, it is very likely that the
investigator will wish to average corresponding quantities in order to
obtain a single value to report at each energy. Development of
covariance information should begin with consideration of all the
primary experimental values. A primary covariance matrix ought to be
constructed at this level. However, for reporting purposes, what is
desired is a secondary covariance matrix corresponding to the final set
of values, namely one cross section for each energy. A procedure for
performing this “collapsing” exercise has been developed by Smith
(Smi87c) and it was subsequently employed by Watanabe et al (W+87) in
the analysis of data from a neutron-fission cross-section-ratio
experiment. The reader is referred to the work of Smith (Smi87c) for an
example of the procedure. The covariance matrices described in
Section 3 of that paper, namely, the primary matrix of 4 x 4 and the
collapsed secondary matrix of dimension 2 x 2, are both positive
definite.

Another very important type of transformation problem arises
routinely in reactor physics. It concerns the transformation required
to change the representation of a cross section from a particular group
structure to another. Mannhart (Man82) has discussed this problem, and
it is dealt with in greater detail by Muir and MacFarlane (MM85) in
their documentation for the ERRORR and COVR modules of the NJOY nuclear
data processing system. Their procedures are equivalent, and they
assume that all of the uncertainty is concentrated in the cross section
set. The fundamental requirement is that any group cross section
formulation derived from a point representation, or any transformation
from one formulation to another, must preserve the integral response,
namely, the quantity [ o(E)¢(E)dE, where o(E) is the energy-dependent
cross section and ¢(E) is the energy-dependent neutron spectrum. It is
shown in both of the above-mentioned references that, given one set of
group cross sections, those group cross sections which result from a
transformation required to adapt to a new group structure are linear
combinations of the original cross sections. The weighting factors are
in fact group fluxes. Furthermore, the coefficients of the
transformation are also simple functions of the various group fluxes.
The formulas are derived by application of the law of error propagation
as described above. We can demonstrate this process through the
following simple example.

Consider a three group (very coarse) representation of a continuous
cross section o(E) and neutron spectrum #(E). The group quantities are
denoted by (01'02’03) and (01,02,03). We wish to collapse this

three-group structure to a two-group structure. It i: assumed that the
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group intervals are compatible in the sense that one of the existing
groups is preserved while the other two are combined to form a single
group. Let ¢l = 01+ 02 and @2 = 03 represent the group fluences for the
collapsed structure while 21 and zz are the revised group cross
sections. Integral response is preserved provided that

zZ, - (olo1 + 'éoz)/¢1 and z, - O4- It can be readily shown that the

elements of the transformation matrix are 111 = 01/¢1. T12 =0,

T,y = 02/¢1. T22 = 0, T31 = 0 and T32 =1, For convenience, let us
assume that the initial group fluxes and group cross sections are all
unity. The total uncertainties in the group cross sections are taken to
be 5%, 6X, and 7%, respectively, for the three initial groups. We

assume that the correlations between groups amount to 0.5. The

covariance matrix ?6 for this set is as follows

0.0025 0.0015 0.00175
0.0015 0.00386 0.0021
0.00175 0.0021 0.0049

This matrix is positive definite.

Clearly, the transformation matrix T has the form

0.5 0
0.5 0
0 1

The transformation yields the solution values zl = 22 = 1, @1 = 2,

¢2 = 1 and a covariance matrix iz equal to

0.002275 0.001925
0.001925 0.0049
This matrix is positive definite.

It is intuitively clear that with care it is quite possible to
preserve positive definiteness through the process of collapsing group
cross sections. It is quite another story for the expansion of group
representations. Redundancy enters unavoidably through such procedures
and the matrices obtained will not be positive definitet It has been
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suggested by some authors (e.g., Pee82 and IN87) that no serious harm
can come in practice from manipulations involving covariance matrices
which possess only a few non-positive eigenvalues/ provided that the
magnitude of the largest negative eigenvalues are significantly smaller

than those of the dominant positive eigenvalues of the matrix. The
arguments appear to be based upon an assumption that the impact upon the
magnitude of the quadratic form will be small. It is our opinion that

the results to be expected from performing analyses involving
non-positive definite covariance matrices which originate due to
manipulations such as those indicated above merit further study.
However, owing to the general complexity of the computational procedures
routinely employed in reactor physics, this would be a difficult task
which is beyond the scope of the present work. We suggest that workers
in the field should at least be aware that the issue exists and ought to
realize that, unless they take suitable precautions, they will often be
working with non-positive definite matrices as a consequence of
transformations of this nature.

It is apparent that most of the problems associated with the
preservation of positive definiteness in random variable transformations
are generally not attributable to the process of error propagation
jtself, but are deeply rooted in the nature of the transformations. For
this reason, whenever a transformation of variables is performed, the
resulting covariance matrix should be tested for positive definiteness.
If the matrix is non-positive definite, the problem most probably can be
uncovered from an inspection of the transformation unless a numerical
mistake has been made. Non-positive definiteness is a signal that the
transformation has introduced either redundancy or some other
inconsistency into the analytical process.

Last on our list for discussion is the matter of the positive
definiteness of covariance matrices generated by the method of least
squares. This topic has been reviewed by several authors (e.g., Man81,
Pee82, and Fro86). It is a complex issue which we also choose not to
pursue with any depth in this report. We merely add as an observation
that, in our experience, those analytic procedures involving the method
of least squares generally lead to positive definite matrices so long as
the covariance matrices for the input parameters are positive definite
and the data being analyzed are reasonably consistent. We have found
that the generalized least-squares method offers valuable procedures for
combining information from diverse sources (e.g., prior representations,
nuclear model calculations, differential data, and integral data) in a
consistent way, just as long as one does not demand more from the
aggregate of information than is there to provide. Put another way, the
method of least squares as an information combination procedure appears
in practice to generate solution covariance matrices which are positive
definite (given physically consistent input) if the dimension of the
solution parameter set which is sought does not exceed the rank (number
of distinct pieces of information) of the input parameter set.
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IV. PROCEDURES TO TEST FOR POSITIVE DEFINITENESS OF MATRICES

Two FORTRAN computer programs, MATXTST and MATXTST1, have been
developed to test symmetric matrices for positive definiteness. They
have been implemented on an IBM personal computer, but the routines are
written in a sufficiently general fashion to be useful on a variety of
machines, with only minor changes anticipated for the 1/0 formats. The
mathematical procedures employed in these routines are described in
Section II. The present chapter focuses on a general description of
these programs and the manner in which they should be employed. Details
on the computational procedures and the 1/0 formats are described in the

Appendix.

As indicated in Section II, the mathematical tools available for
the investigation of positive definiteness include the computation of
matrix determinants, evaluation of leading principal minors,
determination of matrix eigenvalues, and consistency tests for
correlations (for matrices with n > 3 this essentially involves
examination of the internal consistency of various 3 X 3 sub-matrices).
While the two programs utilize the same input, the calculational
procedures employed are somewhat different and their functions are
complementary, as is described below and in the Appendix. The available
input options include: i) the full covariance matrix, ii) the basic
variables plus the relative covarijance matrix, or iii) uncertainties in
the basic variables plus the correlation matrix.

Algorithms in FORTRAN from LINPACK (D+79) and a collection of
low-level subroutines called Basic Linear Algebra Subprograms [(BLAS]
(L+79) have been employed in the development of MATXTST and MATXTSTi1.
The main differences in these programs are indicated below:

MATXTST

This program tests all leading principal minors to see whether they
are positive. If so, then the main matrix js declared to be positive
definite, Computation of the determinant of the main matrix and its
inverse is performed as an option if requested. However, if one
principal minor is found to be zero or negative, the code identifies the
principal minor, declares the matrix to be non-positive definite, and
prompts the user for an optional correlation test., If this option is
selected, then (for matrices with n > 3) the code tests all 3 x 3
sub-matrices that can be formed from the matrix associated with the
anomalous leading principal minor to determine whether or not they are

positive definite. In this fashion the user is provided with useful
information concerning the origin of non-positive definiteness in the
main matrix. The process of purging a large matrix of sources of

non-positive definiteness is by necessity an iterative one, since
MATXTST halts as soon as the first non-positive principal minor is
encountered.
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MATXTST1

This program first tests the whole matrix for singularity. If the
matrix is found to be singular (to within the numerical precision of the
code), it is declared as such and the analysis stops. However, if the
matrix is non-singular, then the matrix determinant, the inverse matrix
and the number of positive and negative eigenvalues, is determined.

If the user needs only to determine whether a matrix is positive
definite or not, then use of the basic routine in MATXTST is the method
of choice. On the other hand, if the matrix is found to be non-positive
definite and further details are required to uncover the source of the
problem, then the optional features of MATXTST and the algorithms of
MATXTST1 are found to be useful.

Examples of the application of these codes are provided in the
Appendix along with a listing of the FORTRAN sources statements.
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V. COVARIANCE MATRICES AND EVALUATED DATA FILES

A very important issue for consideration is that of the manner in
which covariance information is recorded in and extracted from evaluated
data files. The formats employed in the ENDF system (KM83) are the most
widely emulated around the world, so it forms the basis for the present
discussion. Covariance information in this system 1is recorded
specifically in File 33. The details of the various allowed formats for
that file are rather complicated, so they will not be dealt with here.
In general, these formats allow for covariance information which is
self-contained within a specific reaction, and they also provide for
cross-referencing between reactions. They allow for the possibility of
constructing a covarjance matrix by superimposing contributions
containing information recorded using various types of numerical
structures, thereby providing a capability for simulating relatively
complicated correlation patterns. However, there is one common feature
to all of these structures which is problematic in the present context,

energy-grid fashion, with prescriptions provided for numerically
interpolating between grid values to obtain specific cross section
values, in File 33 energy intervals are established and covariance
information applicable to a particular interval is assumed to be
invariant within that interval and, consequently, applies uniformly to
cross section values deduced at any energy falling within that interval,

It is not difficult to see how matrices which are non-positive
definite can result from drawing covariance information out of files
containing information recorded in energy-interval fashion. Let us
suppose that the essential information contained in a positive definite
matrix is transformed into a File 33 structure. The original matrix
presumbly represents the uncertainties for a well-defined collection of
cross section values corresponding either to a specific group structure
or to a specific grid structure. Suppose, however, that it is
subsequently desired to deduce the total uncertainties and correlations
for evaluated cross sections at two particular energies which happen to
fall within the same corresponding energy intervals for each of the
provided components of the covariance matrix representation found in
File 33. The resulting correlation pattern which will then be deduced
in this instance is 100%. Consequently, the derived covariance matrix
will be non-positive definite. This is a very real problem in practical
applications because, as a general rule, the energy-interval structures
encountered in ENDF representations of covariance information for
evaluated files, €.g., ENDF/B-V (Kin79), tend to be rather coarse in
order to minimize the volume of numerical material which has to be
stored in these files, On the other hand, in reactor physics
applications, e.g., it is very common to use rather fine group
structures (often several hundred energy intervals) to represent the
cross section information over a wide energy range with sufficient
precision for applications such as those encountered in neutron
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shielding computations. The consequence of these conflicting
requirements is that the processing codes which are used to produce
group covariance matrices from ENDF files, e.g., the NJOY code (MM85) ,
commonly generate matrices which are non-positive definite. An example
of this can be seen by referring to Table 6 of the recent report by
Noltenius (Nol87).

There do not appear to be any convenient methods for dealing with
this problem within the limitations of the existing ENDF File 33
formats. What is needed is to introduce into the system the means to
denote a truly random (zero-range) error component. The magnitude of
the random error could be allowed to vary with energy, perhaps using a
grid-point method with interpolation, or even an energy-interval
structure in which a constant random error over a particular energy
interval is indicated. The method by which this is accomplished is not
of particular importance. What is crucial, however, is that when
processing covariance information in evaluated data systems such as
ENDF, in order to generate covariance matrices for specific
applications, random error ought to always be introduced in such a way
that the resulting matrix will be positive definite. This could be
accomplished by merely adding to each File 33 entry an additional
component which, when manipulated by processing codes, leads to the
addition of a random error component to each of the diagonal covariance

matrix elements for the particular application in question. By using
this approach, most other aspects of the existing File 33 format
structure could be preserved. Symbolically, we could represent the
covariance matrices generated through this procedure by the expression
V.. =ZV,,.+ 8, V_(E), where the sum over k represents addition of all
ij K kij ij R
of the individual components Vkij (short-range, long-range, etc.)
normally encountered in the ENDF system (as currently formulated), while
VR‘ is the suggested additional random (zero-range) component. The
quantity 61j js the Kronecker Delta Function. The additional term

signifies that insofar as the evaluation is concerned, the cross section
value at energy E possesses a random error component with a magnitude as
indicated by the added term. If this approach were used, care would
have to be taken in error propagation analyses to insure that this
random error is either averaged down or left unaltered, as indicated by
the physical circumstances. Attention to such details would have to be
the responsibility of the user of this information.

We are cognizant of the serious implications of any suggestions to
alter existing ENDF formats. In particular, we recognize that a large
number of complex computer codes exist which employ data recorded in the
contemporary ENDF formats as input, and any changes in these formats
would probably necessitate some revision of these codes. In any event,
we believe that this proposition warrants serious study within the
community, and that any alterations to the existing ENDF formats which
might be entertained should be very carefully considered from the point
of view of their impact upon major user codes, as well as from purely
physical and mathematical considerations.
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VI. CONCLUSIONS

Nuclear data covariance matrices ought to be positive definite so
that a physically reasonable representation of uncertainties is
provided. Non-positive definiteness in these covariance matrices can
always be traced to the presence of redundant and/or inconsistent
information. Certain analytical practices are shown to lead, more often
than not, to the generation of consistent, positive definite matrices,
e.g., adherence to rigorous procedures in the propagation of error, in
the transformation of information from one group representation to
another, and in the use of statistical procedures such as the

least-squares method in the adjustment of data. Furthermore, it is
evident that random error should always be included in the
representation of real physical uncertainties. Covariance matrices

should always be tested for positive definiteness and for consistency.
Routines for accomplishing this task and for identifying specific
problem sources are described in this report, and they have proved to be
very useful in practice. It has been concluded that certain
deficiencies in the covariance content of existing evaluated nuclear
data files, and some inadequacies in the contemporary ENDF procedures
for representing covariance information, have led to the generation of
non-positive definite matrices in several applications reported in the
literature. A suggestion is offered for dealing with this important
problem.
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APPENDIX

The FORTRAN programs MATXTST and MATXTST1 provide the user with
selectable options that enable the following operations to be carried
out for a covariance matrix:

i) Test for singularity.
ii) Test for positive definiteness.
iii) Compute the inverse if the matrix ijs non-singular.
iv) Compute the determinant.

v) Determine the inertia, i.e., the number of positive, negative and
Zero eigenvalues.

vi) Examine all possible 3 x 3 cross correlations within a sub-matrix
corresponding to a leading principal minor which is non-posjitive
definite (if the dimension of the sub-matrix equals or exceeds 3).

The user of these codes should be aware that the specific conclusions
reached concerning singularity, positive definiteness, or the existence
of zero eigenvalues will depend to a considerable extent upon the
attainable numerical precision of the computer being used in the
analysis. Thus, one should preface al} such conclusions by the remark:
"to within working precision.”

The computational procedures employed in these codes are described
next.

MATXTST

This code employs two LINPACK (D+79) subroutines called SPOFA and
SPODI in the analyses used to test for positive definiteness and to
perform further optional calculation. Subroutine SPOFA - factors a

symmetric matrix M using the Cholesky algorithm to determine the
elements of a matrix R which satisfies the relation M = R'R. During the

process of factorization, each leading principal minor of M is tested
and the first ope found which js not positive definite triggers a return
of control to the main program, thereby abandoning the process of
factorization. Within the main program, a declaration ig made that the
entire matrix jg non-positive definite and the offending leading
principal minor is identifjed. The program then offers the user the
option of either quitting or examining all the 3 x 3 Cross correlations
between elements in the corresponding submatrix (if its dimension equals
or exceeds 3). On the other hand, if the entire matrix is found to be
positive definite, it jg declared as such and the user has the option of
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MATXTST1

The matrix computations and classifications in this code are
performed using the LINPACK (D+79) subroutines SSICO, SSIFA, and SSIDI.

Subroutine SSICO is used to estimate whether the matrix M is near to
singularity or not, and to perform the matrix diagonalization process,

i.e., the transformation from M to D that is indicated in Eq. 9. The
test for singularity is accomplished through estimation of the parameter

RCOND = 1/[det(ﬁ)det(ﬁ—1)]. If RCOND is so small that within the range

of the floating point arithmetic of the computer it is negligible
compared to unity, i.e., if the computer finds that (1.0 + RCOND) .EQ.1.0

is satisfied, then the matrix M is considered to be singular to working

precision. In this case the program declares M to be singular and the
computation is terminated. If the matrix is found to be non-singular,
then it is diagonalized by the subroutine SSIFA. The algorithm used is
a generalization of the Method of Lagrange Reduction. Next, subroutine
SSIDI is used to compute the determinant and inertia of the matrix. A
matrix of order n is classified according to the number of positive,
INERT(1), negative, INERT(2), and zero, INERT(3), eigenvalues found.
Since this procedure is not executed if subroutine SSICO has determined
that the matrix is singular, one might ask how zero eigenvalues could
occur. This apparent contradiction arises because of limits in
numerical precision. It is possible for a matrix to pass the SSICO test
for non-singularity and still have eigenvalues so close to zero that
subroutine SSIDI classifies them as equivalent to zero for purposes of
establishing the inertia of the matrix. The corresponding matrix
classification scheme is as follows:

Table A.1
Eigenvalues Matrix Classification
INERT(1) = n Positive definite
INERT(2) = n Negative definite
INERT(1) + INERT(3) = n Positive
INERT(2) + INERT(3) = n Negative
INERT(1) + INERT(2) + INERT(3) = n Indefinite

_—___—-___—___..____——_———_—_—_——-———

It is important to emphasize that underflows and overflows may be
encountered in the computation of determinants, owing to computer
limitations. The manner in which this situation is handled depends, of
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course, upon the nature of the computer used and the manner in which the
operating system handles the computer's inherent limitations.
Underflows (very small values) are often treated as zero by operating
systems (except in division), thereby allowing computations to proceed
essentially unaffected. Overflows are far more problematic, and the
user will be forced to deal individually with such situations.

Next we turn to details of the operation of these codes. As
indicated in Section 1V, the input structure for both codes is
identical. Listings of each of these codes are included at the end of
this Appendix, as well as some sample problems. Input is from a file,
while output is both to the screen and to a file, depending upon the
options selected.

Input Format

N (12)
This integer is the order (size) of the symmetric matrix
IOP (I2)

This integer selects the input option. Three input options are
permitted for defining the covariance matrix, namely,

IOP = 1: Input errors in appropriate units and the correlation

matrix,
I0P = 2: Input covariance matrix directly,
IOP = 3: [Input relative covariance matrix and the fundamental
variables in appropriate units (e.g., cross sections).
IND (12)

This integer parameter selects the options for execution of the
programs. The execution options available for the two programs are

as follows:
IND MATXTST MATXTST1
00 Stop Only inertia
10 Only determinant Determinant and inertia
01 Only inverse matrix Inertia and inverse matrix
11 Determinant and Determinant, inertia and
inverse matrix inverse matrix
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The floating point parameters which serve to specify the matrix are
entered in a form consistent with the selected input option (10P).
Since we are only interested in symmetric matrices, only the lower
triangle of the matrix is provided in the input. Specific format
details are evident from the program source listing. All such input is
in 6E12.6 format.

In each program the correlation matrix is first tested to determine
if any of its elements exceed unity in value. If any do, program
execution ceases. The output is self-explanatory, as is evident from
the examples provided in this appendix.
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MATXTEST - cpc - L.P.GERALDO - AP 314

TESTS A SYMMETRIC MATRIX FOR POSITIVE DEFINITENESS.
THIS PROGRAM ALSO COMPUTATES THE DETERMINANT AND
INVERSE MATRIX

OPTIONS FOR MATRIX INPUT (IOP)

OPTION 1 - INPUT ERRORS AND CORRELATION MATRIX
OPTION 2 - INPUT COVARIANCE MATRIX

OPTION 3 - INPUT CROSS SECTIONS AND RELATIVE COVARIANCE MATRIX

OPTIONS FOR MATRIX - INFORMATION OUTPUT (IND)
TOGETHER WITH POSITIVE DEFINITENESS TEST.

OPTION - 00 = STOP

OPTION - 10 = ONLY DETERMINANT

OPTION - 01 = ONLY INVERSE MATRIX

OPTION - 11 = BOTH DETERMINANT AND INVERSE MATRIX

REAL A(50.50),C(EO,SO),F(SO.SO),B(SO),X(SO),D!T(3).T.D
REAL V(50,50),H(s,S),TS,XS,YS,ZS
DATA LDA/350/
DATA LD/3/
DATA IN/'N '/
WRITE(*,5)
FORMAT(1X, ‘DATA INPUT: ')
OPEN(3,FILE=' ' /STATUS='QLD ')
READ(3,10)N
FORMAT(12)
READ(3,10) 10P
READ(3,10) IND
FORMAT(6E12.6)
GO TO (20,40,50) IoP
CONTINUE
READ(3,15) (E(I), I=1,N)
DO 25 I=1,N
READ(3,18) (C(I,3), Jm1,1)
DO 30 I=1,N
DO 30 J=1,1
C(J,I)=C(1,3)
DO 38 I=1,N
DO 35 J=1,N
AlI.J) = B(I)*B(J)*c(I,J)
DO 36 I=1,N
DO 36 J=1,N
V(I,J)=A(I,J)
G0 TO 710
CONTINUE
DO 45 I=1,N
READ(3,18) (A(I.3), J=1,1)
DO 46 I=1,N
DO 46 J=1,N
A(I,J)=A(T,1)
DO 47 1I=1,N
DO 47 J=3i,N
C(I.J)'A(I»J)/(A(I.I)‘A(J.J))"0-5

anoon

[ X: X}

QOQ(_!

a oaon

DO 48 I=i,N
DO 48 J=3,N
48 V(I ,J)=A(L,J)
GO TO 70

~ 80 CONTINUE

READ(3,15) (X(I), I=1,N)
DO 55 I=i N
85 .. READ(3,15) (F(X,3), J=1,1)
DO 60 I=),N
. DO 60 J=i,N
60 F(I,J)=F(J,I)
DO 65 I=i,N
DO 65 J=1,N
(1] A(I,J)'X(I)‘X(J)"(IoJ)
DO 67 I=i,N .
DO 67 J=1,N
67 CII,3)=A(I,3)/(A(I,I)*A(I,T))%%0.5
DO 68 I=1,N
DO 68 J=1,N
68 V(I,J)=A(I,J)
70 CONTINUE

CORRELATION MATRIX TEST

DO 73 I=1i,N
© DO 73 Jm=1,1
IF(I .EQ. J) GO TO 73
IF(ABS(C(I,J)) .LE. 1) GO TO 73
WRITE(*,71)
ke PORMAT(1X,'... I ....... 3 reseees €(I,J)
HRITB(‘.72)I,J,C(I,J)
72 FORMAT(IX.I5,IIO.PII.6)
73 CONTINUE
DO 74 I=1 N
DO 74 J=1,1
IF(I .EQ. J) GO TO 74
IF(ABS(C(1,J)) .GT. 1) GO TO 240
74 CONTINUR

POSITIVE DEFINITENESS TEST
CALL SPOFA(A,LDA,N, INFO)
IF (INFO .NE. 0 ) GO TO 128
OUTPUT DATA
WRITE(*,80)
80 FORMAT(1X,' THIS MATRIX IS POSITIVE DEFINITE
IF (IND .EQ. 0) GO TO 120
DETERMINANT AND INVERSE MATRIX COMPUTATION
CALL SPODI(A,LDA,¥,DRT, IND)

IF (IND .EQ. 11) GO TO 85

IF (IND .EQ. 1) GO 7O 98
[ 1] DT-DIT(I)‘I0.0"DIT(Z)

.

)
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WRITE(®,90) DT WRITE(®,188)

90 FORMAT(1X. 'DET= ', E12.6) 185 FORMAT(1X, 'This cross correlation is not positive definite. ')
1P (IND .EQ. 10) GO TO 120 WRITE(*,187)I1,J1,K1
91 WRITE(*,92) 187 FORMAT(1X,'The correspondent parameters are: ',314)
92 FORMAT(1X,'Do you want to save the inverse matrix?¥/N ') 188 IF{K1 .EQ. N) GO TO 200
READ(*®,143,ERR=91) IOP K1=K1+1
IF(I0P .EQ. IN) GO TO 93 GO TO 178
WRITE(®,93) 200 IF(J1 .EQ. K-1) GO TO 210
93 FORMAT(1X, 'Please type the output file name ) J1=J1+1
OPEN(S . FILE=" ' ,STATUS='NEW ') GO TO 170
WRITE(S,94) 210 IF(I1 .EQ. N-2) GO TO 220
94 FORMAT(1X, 'xmxxxxxxxx INVERSE MATRIX XXXXXXXXXX ') Ii=I1+41
DO 941 I=1,N G0 TO 160
DO 941 J=1,N 220 CONTINRUE
9431 A(J,I)=A(I.J) WRITE(®*,230)
DO 942 J=1,N 230 FORMAT(1X,'All 3x3 principal minors were tested ')
942 WRITE(S,115) (A(J.I}, I=1,J) 235 STOP
GO TO 120 238 WRITE(*,239)
239 FORMAT(1X,'The matrix order is lower than 3. ')
95 WRITE(*,100) STOP
100 FORMAT(1X, *xxxwoooxxx INVERSE MATRIX RXRKXXKXXX ' ) 240 WRITE(®,245)
DO 105 I=1,N 245 FORMAT(1X,'This matrix is unreal because the correlation coefficile
PO 105 J=1.N ints above are higher than 1 '}
108 A(J,I)=A(I,J) sSTOP
DO 110 J=31,N END
110 WRITE(®,115) (A(J.I), I=1,J) c
115 FORMAT(1X,50E12.6) [+
120 STOP c
125 WRITE(®*,130) SUBROUTINE SPOFA(A,LDA,N, INFO)
130 FORMAT(1X,'THIS MATRIX IS NOT POSITIVE DEFINITE ') c SPOFA TESTS IF THE MATRIX IS POSITIVE DEFINITE AND
WRITE(®,138) Cc FACTORS A REAL SYMMETRIC POSITIVE DEFINITE MATRIX
135 FORMAT(1X,'VERIFY THE FOLLOWING MATRIX LINE: ') c
I=INFO c
WRITE(*,140)1 INTEGER LDA,N,INFO
140 FORMAT(1X,'LINE I=',I2) REAL A(LDA,1)
WRITE(*,115) (A(I,J),J=1,I) REAL SDOT,T
141 WRITE(®,142) REAL S
142 FORMAT({1X,'Do you want to test all the cross correlations inside t INTEGER J,JM1.K
1his leading principal ainor?Y/N ') c BEGIN BLOCK WITH...EXITS TO 40
READ(*,143,ERR=141) IOP c
143 FORMAT(AL) Cc
IF(I0P .EQ. IN) GO TO 235 DO 30 J = 1, N
WRITE(*,145) INFO = J
145 FORMAT(1X, 'Test of the cross correlation consistency ') S = 0.0EO
N=INFO ML = J -1
IF(N .LT. 3) GO TO 238 IF (JM1 .LT. 1) GO TO 20
150 Ii=1 DO 10 K = 1, JM1
160 Ji=Ii+l T = A(K,J) - SDOT(K-I.A(I.K),I.A(I,J)-l)
170 K1=J1+1 T = T/A(K,K)
178 W(1,1)=V(I1,I1) A(K,J) = T
W(2,2)=V(J1,J1) S »w S + T*T
W(3,3)=V(K1,K1) 10 CONTINUE
w(1,2)=Vv(I1,J1) 20 CONTINUE
w(1.3)=V(I1,K1} S = A(J,J) - 8
W(2,3)=V(J1,K1) c EXIT
H=3 IF (S .LE. 0.0EO) GO TO 40
CALL SPOFA(W,LD M, INT) A(J,J) = SQRT(S)

IF(INP .EQ. O) GO TO 188 30 CONTINUR
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INFO = 0O
CONTINUE
RETURN
END

SUBROUTINE SPODI(A,LDA,N,DET,JOB)

SPODI COMPUTES THE DETERMINANT AND INVERSE OF A CERTAIN

REAL SYMMETRIC POSITIVE DEFINITE MATRIX.

INTEGER LDA,N,JOB
REAL A(LDA,1)

REAL DET(2)

INTERNAL VARIABLES
REAL T

REAL S

INTEGER I,J,JM1,K,KP1

COMPUTE DETERMINANT

IF (JOB/10 .EQ. O) GO TO 70
DET(:) = 1.0EO
DET(2) = 0.0E0
S = 10.0EQ
DO 0 I = 1, N
DET(1) = A(I,I}®**2*DET(1)
.. .EXIT
IF (DET(1) .EQ. O.OE0) GO TO 60

IF (DET(1) .GE. 1.0E0) GO TO 20
DET(1) = S*DET(1)
DET(2) = DET(2) - 1.0EO
GO TO 10
CONTINUE
IF (DET(1) .LT. S) GO TO 40
DET(1) = DET(1)/S
DET(2) = DET(2) + 1.0EC
G0 TO 30
CONTINUE
CONTINUE
CONTINUE
CONTINUE

COMPUTE INVERSE(R)

IF (MOD(JOB,10) .EQ. 0) GO TO 140
DO 100 K = 1, N
A(K,K) = 1.0BO0/A(K,K)

T = -A(K.K)
CALL SSCAL(K-1,T,A(1,K),1)
KPL = K + 1

IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N

T = A(K,J)

A(K,J) = 0.0RO

CALL SAXPY(K,T,A(1,K),1,A(1,J3}).3)
CONTINUE

a0on

oo 00

[t RoNeN ] aoa

90 CONTINUE
100 CONTINUE

FORM INVERSE(R) * TRANS(INVERSE(R))

DO 130 J = 1, N
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 120
DO 110 K = 1, JM1
T = A(X,J)
CALL SAXPY(K,T,A(1,J),1,A(1.K),1)
110 CONTINUE
120 CONTINUE
T = A(J.J)
CALL SSCAL(J,T,A(1,J).,1)
130 CONTINUE
140 CONTINUE
RETURN
END

SUBROUTINE SSCAL{N,SA,SX, INCX)
SSCAL SCALES A VECTOR BY A CONSTANT

REAL SA,SX(1)
INTEGER I,INCX,M,MP1,N,NINCX

M=MOD(N, 5)
IF(M .EQ. O0) GO TO 40
DO 30 I=1 M
SX(I)=SA®SX(I)
30 CONTINUE
IF(N .LT. 5) RETURN
40 MP1l=M+1
DO S0 I=MP1,N,S
SX(I)=SA*SX(I)
SX(I+1)=SA*SX({I+1)
SX(I+2)=SA*SX(1+2)
SX(I+3)=SA®*SX(I+3)
SX(I+4)=SA*SX(I+4)
50 CONTINUE
RETURN
END

SUBROUTINE SAXPY(N,SA,SX,INCX,SY,INCY)

SAXPY COMPUTES THE OPERATION: CONSTANT TIMES A VECTOR

PLUS A VECTOR.

REAL SX(1),.8Y(1),SA
INTEGER I, INCX,INCY,IX,IY,M,MP1,N

M=MOD (N, 4)
IF(M .BEQ. O) GO TO 40
DO 30 I=1,M
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0

SY(I)=SY(I)+SA*SX(I)

30 CONTINUE

40

80

20

30

IF(K .LT. 4) RETURN

MP1=M+1

DO 50 I=MPI,N,4¢
SY(I)=SY(I)+SA*SX(I)
SY(I+1)=SY(I+1)+SA*SX(I+1)
SY(I+2)=SY(I+2)+SA*SX(I+2)
SY(I+3)=SY(I+3)+SA*SX(I+3)

CONTINUE

RETURN

END

REAL FUNCTION SDOT(N,SX,INCX,SY,INCY)
SDOT FORMS THE DOT PRODUCT OF TWO VECTORS

REAL SX(1),SY(1),STEMP
INTEGER I,INCX,INCY,IX,IY,M,MP1,N

STEMP=0.0E0Q

SDOT=0.0E0

IF(N .LE. O)RETURN

M=MOD(N.S)

IF(M .EQ. 0) GO TO 40

DO 30 I=1.M
STEMP=STEMP+SX(1)*SY(I)

CONTINUE

IF(N .LT. 5) GO TO 60

40 MP1=M+1

80

DO 50 I=MP1,N.S5
STEHP-STBHP+SX(I)'SY(I)#SX(I#I)‘SY(I+1)¢SK(I*Z)‘SY(I+2)+

b SX{I+3)*SY(1+3)+SX(X+4)°SY(I+4)

CONTINUE

60 SDOT=STEMP

RETURN
EWD
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MATXTST1 - CDC - L.P.GERALDO - AP314

TESTS A SYMMETRIC MATRIX POR POSITIVE DEFINITENESS.

THIS PROGRAM ALSO COMPUTATES THE DETERMINANT, INERTIA AND
INVERSE MATRIX

OPTIONS FOR MATRIX INPUT (IOP)

OPTION 1 ~ INPUT ERRORS AND CORRELATION MATRIX
OPTION 2 - INPUT COVARIANCE MATRIX
OPTION 3 - INPUT CROSS SECTIONS AND RELATIVE COVARIANCE MATRIX

OPTIONS FOR MATRIX INFORMATION OUTPUT (IND)
TOGRTHER WITH POSITIVE DEFINITENESS TEST.

OPTION - 00 = ONLY INERTIA

OPTION - 10 = DETERMINANT AND INERTIA

OPTION - 01 = INERRTIA AND INVERSE MATRIX

OPTION - 11 = DETERMINANT, INERTIA AND INVERSE MATRIX

REAL A(50,80),C(80,80),F(50,80),B(80),X(50)
REAL WORK(80),DET(3),T,D,RCOND,Z(1)
INTEGER KPVT(80),INERT(3)
DATA LDA/850/
DATA IN/'N '/
WRITE(®,8)
FORMAT(1X, 'DATA INPUT: ')
OPEN(3,FILE=' ', STATUS='OLD ')
READ(3,10)N
FORMAT(I2)
READ(3,10) I0P
READ(3,10) IND
INP=100+IND
FORMAT (6E12.6)
GO TO (20,40,80) IOP
CONTINUE
READ(3,18) (E(I), I=1,N)
DO 28 I=1,N

READ(3,18) (C(I,J), J=1,I)
DO 30 I=1,N

DO 30 J=1,I

C(J,I)=C(I,J)
DO 38 I=1,N

DO 35 J=1,N

A(I,J) = R(I)*B(J)*C(I,T)
G0 TO 70
CONTINUE
DO 45 I=1,N

READ(3,18) (A(I,J), J=1,I)
DO 46 I=1,N

DO 46 J=1,N

A(I.J)=A(J,1)
DO 47 I=1,N

DO 47 J=1,I
C(I,J)=A(I,J)/(A(I,I)*A(J,J))"%%0.8
G0 TO 70

$0 coNTINUR

[ 1]

67
70

aaon

ano

aooao

n

72
73

READ(3,18) (X{(I), I=1,N)
DO 88 I=1,N

READ(3,18) (F(I,J), J=1,I)
DO 60 I=1.N

DO 60 J=1,N
P(X,7)=F(J,I)
DO 65 I=1,N

DO 65 J=1,NM
A(I.J3)=X(X)*X(J)*F(I1.3)
DO 67 I=1,N

DO 67 J=1,1
C(I,7)=A(I,J)/(A(I.I}*A(J,J))%%0.8
CONTINUE

CORRELATION MATRIX TEST

DO 73 I=1,N
DO 73 J=1,1
IF(I .EQ. J) GO TO 73
IP(ABS(C(I,J)) .LE. 1) GO TO 73
WRITE(*,71)

CFORMAT{1X,'... I soeeees T ceneess CG(1.I) ... ')
WRITE(®,72)1,J,C(I.J7)
FORMAT(1X,15,I10,F18.86)

CONTINUE

- DO 74 I=1 N

DO 74 J=1,I
IP(I .BQ. J) GO TO 74
IF(ABS(C(I,J)) .GT. 1) GO TO 180

CONTINUE

74

78

76

110

112
114

116

116

POSITIVE DEFINITRNESS TEST

CALL SSICO(A,LDA,N,KPVT,RCOND.Z)
WRITE(®,75)RCOND

FORMAT(1X, 'RCOND= ',R12.86)
T=1.0+RCOND

IF(T .NE. 1.0) GO TO 110

OUTPUT DATA

WRITE(*,76)

FORMAT(1X, 'This satrix is singular to working precision’)
STOP

CALL SSIDI(A,LDA,N,KPVT,DET,INERT,WORK, INP)

IF (INP .EQ. 101) GO TO 112

IF (INP .EQ. 110) GO TO 130

IF (INP .EQ. 100) GO TO 184

WRITE(®,114)

FORMAT(1X, 'Do you want to save the inverse matrix?y/N ')
RRAD(*,118,ERR=112)I0P

FORMAT (A1)

Iy (IoP .EQ. IN) GO TO 120

WRITE(*,116)

FORMAT (1X, 'Please type the cutput file name')

OPEN(5,.FILE=’ ',STATUS='NEW ')
MRITE(S,317)
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0000

117

118
119

120
122

124

12¢
128

130
140
149
180
184
188

160

162
163

164
168

166
187

168
169

170
171

180
188

FORMAT(1X, * xxxxxxxxxx INVERSE MATRIX XXXXXXXXXX ')
DO 118 I=1.N
DO 118 J=1,X
A(T,1)=A(I,T)
DO 119 Jw=i,N
WRITE(S5,128) (A(J.I1), I=1,J)
GO TO 130
WRITE(®*,122)
FORMAT({ 1X, ' xxxxxxxxxx INVERSE MATRIX XxxxXxxxxxxx ')
DO 124 I=1i.,N
DO 124 J=1i,N
A(J,I)=A(I,T)
DO 126 J=1,N
WRITE(®*,128) (A(I,J),I=1,J)
FORMAT(1X,50EK12.6)
IF (INP .NE. 111) GO TO 154
CONTINUE
DT=DET(1)*10.0**DET(2)
WRITE(*,180) DT
FORMAT(1X, 'DET= ' ,E12.6)
WRITE(*,155)
FORMAT (1X, 'xxxxx INERTIA=Number of Eigenvalues xxxxx ')
WRITE(®,160) (INERT(L),L=1,3)
FORMAT(1X, 'Positive= ',12,'
IF (INERT(1) .EQ. N) GO TO 182
IF (INERT(2) .EQ. N) GO TO 164
IF (INERT(1)+INERT(3) .EQ. N) GO TO 166
IF (INERT(2)+INERT(3) .EQ. N) GO TO 168
IF (INERT(1)+INERT(2)+INERT(3) .EQ. N) GO TO 170
WRITE(*,163)
FORMAT(1X, 'This matrix is Positive Definite')
STOP
WRITE(®*,165)
FORMAT(1X, 'This matrix is Negative Definite')
STOP
WRITE(®*,187)
FORMAT(1X, 'This msatrix is Positive ')
STOP
WRITE(*,169)
FORMAT(1X, ‘This matrix is Negative ')
STOP
WRITE(*,171)
FORMAT(1X, 'This matrix is Indefinite ')
STOP
WRITE(®*,185)
FORMAT(1X,'This matrix is unreal because the correlation coefficle
ints above are higher than 1')
STOP
END
SUBROUTINE SSICO(A,LDA,N,KPVT,RCOND,Z)
INTEGER LDA,N,KPVT(1)
REAL A(LDA,1),2(1)
REAL RCOND

Negative= ',I2,’' Zero= '12)

8SICO FACTORS A REAL SYMMETRIC MATRIX BY ELIMINATION WITH
SYMMETRIC PIVOTING AND ESTIMATES THE CONDITION OF THE MATRIX

INTERNAL VARIABLES

10
20
30

40

80

80

70

80

100

REAL AK,AKM1,BK,BKM1,SDOT,DENOM,EK,T
REAL ANORM, S, SASUM, YNORM
INTEGER I, INFO,J,JM1,K,KP, KPS, KS

DO 30 J=1,N
Z(J)=SASUM(J,A(1,J),1)
IM1=J-1
IF(JM1 .LT. 1) GO TO 20
DO 10 I=1,JM1

Z(I)=Z(I)+ABS(A(I.J))
CONTINUE
CONTINUE

CONTINUE

ANORM=0 .0EQ

DO 40 J=1,N .
ANORM=AMAX1 (ANORM,Z(J))

CONTINUER
CALL SSIFA(A,LDA,N,KPVT, INFO)
EK=1.0E0
DO 80 J=1 ,N
Z(J)=0.0EO
CONTINUE
K=N
IF(K .EQ. 0) GO TO 120
KS=1

IF(KPVT(K) .LT. 0) KS=2
KP=IABS(KPVT(K))

KPS=K+1-KS

IF(KP .EQ. KPS) GO TO 70

T=Z (KPS)

Z(KPS)=Z(KP)

Z(KP)=T

CONTINUE

IF(Z(K) .NE. 0.0E0) EK=SIGN(EK.Z(K))
Z(K)=Z(K)+EK

CALL SAXPY(K-KS,Z(X),A(1,K),1,2(1),1)
IF(KS .EQ. 1) GO TO 80

IF(Z(K~1) .NE. 0.0E0) EK=SIGN(EK,Z(K-1))
Z(K-1)=Z{K-1)+EK

CALL SAXPY(K-KS,Z(K-1),A(1,K-1},1,2(1),1)
CONTINUE

IF(KS .EQ. 2) GO TO 100

IF(ABS(Z(K)) .LE. ABS(A(K,K))) GO TO 90
S=ABS(A(K,K))/ABS(Z(K})

CALL SSCAL(N,S,Z,1)

EK=S*EK

CONTINUR

IF(A(K.K) .NE. 0.0EO) Z(K)=Z(K)/A(K,K)
IF(A(K,K) .EQ. 0.0E0) Z(K)=1.0EO

GO TO 110

CONTINUE

AK=A(K,K)/A(K-1,K)
AKM1=A(K-1,K~1}/A(K-1,K)
BK=Z(K)/A(K-1,K)

BKM1i»Z(K-1)/A(K-1,K)
DENOM=AK*AKM1-1,0R0
Z(K)={AKM1*BK-BKM1 ) /DENOM
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110 CONTINUE
K=K-KS
GO TO 60
120 CONTINUE
s-1.020/sasuu(u,z,1)
CALL SSCAL(N,s,z,1)
K=l
130 IF(X .GT. N) go TO 160
KS=3
IF(KPVT(K) .LT. 0) KS=2
IF(X .EQ. 1) G0 10 150
z(x)-Z(X)+snor(x-1,A(1,x).1,2(1),1)
IF(KS .EQ. 2)
. 2(x+1)-2(x+1)+snor(x~1,A(1,x+1),1.2(1).1)
KP=IABS(KPVT(K))
IF(XP .EQ. K) Go 70 140
T=Z(K)
Z(K)=Z(Kp)
Z(KP)=T
140 coNTINUE
150 CONTINUE
K=K+KS
GO TO 130
160 CONTINUE
s-x.OBO/SAsuu(N,z,x)
CALL SSCAL(N,S,2,1)

YNORM=1,0E0
K=N

170 IF(K -EQ. 0) Ggo 1o 230
KSa}

IF(KPVT(K) -LT. 0) Ksm=2
IF(K .Eq. KS) Go 10 190
KP-IABS(KPVT(K))
KPS=K+1-Ks
IF(KP .EQ. KPS) GO TO 180
T=Z (KPS)
Z(KPS)=2(Kp)
Z(KP)s=T
180 CONTINUE
CALL SAXPY(K—KS,Z(K),A(I.K),1,2(1).1)
IF(Ks .Eq. 2) CALL SAXPY(K-KS,Z(K-I),A(I.K-
190 CONTINUE
IF(Ks .Eq. 2) GO TO 210
IF(ABS(Z(K)) .LE. ABS(A(K,K))) 6o TO 200
S-ABS(A(K.K))/ABS(Z(K))
CALL SSCAL(N,S,Z,l)
YNORM=S*YNQORM
200 CONTINUE
IF(A(K.K) .NE. 0.0E0) Z(K)-Z(K)/A(K,K)
IP(A(K.K) -EQ. 0.0E0) Z(K)=1,0E0
GO TO 220
210 CONTINUE
AK-A(K.K)/A(K—I.K)
AKMI-A(K~1,K—1)/A(K-1.K)
BK-Z(K)/A(K-I.K)
BKHI-Z(K-I)/A(K—I,K)
DBHOM-AX‘AKHI-l.O!O
Z(K)-(AKMI'BK-BKHI)/DINOH

1).1,2(1),1)

000 oaa

220

230

240

250
260

270

10

20

Z(K-I)-(AK'BKNX-BK)/D!NOH

CONTINUER

K=K-KS

GO TO 170

CONTINUE

S-I.OEO/SASUM(N,Z.I)

CALL SSCAL(N.S.Z.!)

YNORM=S*YNORM

K=1

IF(K .GT. N) go T0 270

KS=)

IF(KPVT(K) .LT. 0) KkS=2

IF(K .Eq. 1) GO TO 280

Z(K)-Z(K)+SDOT(K-1.A(I,K).1.2(1),1)

IF(Ks .pq. 2)
Z(K+l)-Z(K+1)+3DOT(K-1,A(1.K+1),1,2(1).1)

KP-IABS(KPVT(K))

IF(KP .EqQ. K) GO TO 250

T=Z(K)

Z(K)=Z(KP)

Z(KP)=T

CONTINUE

CONTINUER

K=K+KS

GO TO 240

CONTINUE

S-l.OBO/SASUM(N.Z.l)

CALL SSCAL(N,S,Z.I)

YNORM=S *YNORM

IP(ANORM .NE. 0.0E0) RCOND-YNORM/ANORM

IF(ANORM .Eq. 0.0E0) RCOND=0,0E0

RETURN

END

SUBROUTINE SSIFA(A,LDA,N.KPVT,INPO)
SSIFA FACTORS A REAL SYMMETRIC MATRIX BY ELIMINATION
WITH SYMMETRIC PIVOTING

INTEGER LDA.N.KPVT(I).INFO

REAL A(LDA, 1)
RRAL,AK.AKHI,BK,BKHI.DZNOH,MULX,HULKMI,T

REAL ABSAKK,ALPHA,COLHAX,ROHHAX

INTEGER IHAX,IMAXPI,J,JJ,JHAX,K,KMI,KHZ.KSTEP,ISAHAX
LOGICAL swap

ALPHA = (1,0pg + SQRT(]?.OBO))/G.O!O
INFO = o

K=N

CONTINUE

IF(K .Eq. 0} GO TO 200

IF(K .GT. 1) Go 10 20

KPVT(1) = 3

IF (A(1,1) -EQ. 0.0R0) INFO =1
G0 TO 200

CONTINUE

KMl = x ~ 3



8%

CALL SSWAP{IMAX,A(1,IMAX),1,A(1,K-1),1)
DO 180 JJ = IMAX, KMl

J = KM1 + IMAX - JJ

T = A(J,K-1)

A{J,K-1) = A(IMAX,J)

ABSAKK = ABS(A(K,K))

IMAX = ISAMAX(K-1,A(1,K).1)

COLMAX = ABS(A{IMAX,K))

IF (ABSAKK .LT. ALPHA®COLMAX) GO TO 30

KSTEP = 1
SWAP = .FALSE. A(IMAX,J) = T
Qo TO 90 150 CONTINUE

T = A(K-1,K)
A(K-1,K) = A(IMAX,K)
A(IMAX,K) = T

160 CONTINUE
KM2 = K - 2
IF (KM2 .EQ. 0) GO TO 180
AK = A(K,K)/A(K-1,K)

30 CONTINUE
ROWMAX = 0.OEO
IMAXP1 = IMAX +1
DO 40 J = IMAXP1l, K
ROWMAX = AMAX1 (ROWMAX, ABS (A(IMAX,J)}))
40 CONTINUE
IF (IMAX .EQ. 1) 6O TO 50

JMAX = ISAMAX(IMAX-1,A(1,IMAX),1) AKM1 = A(K-1,K-1)/A(K-1,K)
ROWMAX = AMAX1(ROWMAX,ABS{A(JMAX, IMAX))) DENOM = 1.0E0 - AK®*AKM1
50 CONTINUE DO 170 JJ = 1, KM2

IF (ABS(A(IMAX,IMAX)) .LT. ALPHA*ROWMAX) GO TO 60 3 = KMl - JJ

BK = A(J,K)/A(K-1,K)

KSTEP = 1
SWAP = .TRUE. BKM1 = A(J,K-1)/A(K-1,K)
GO TO 80 MULK = (AKM1*BK - BKM1)/DENON

60 CONTINUE MULKM1 = (AK*BKM1 - BK)/DENOM

IF (ABSAKK .LT. ALPHA*COLMAX® (COLMAX/ROWMAX)) GO TO 70 T = MULK
CALL SAXPY(J,T,A(1.,K),1,A(1,J).1)

KSTEP = 1
SWAP = .FALSE. T = MULKM1
GO TO 80 CALL SAXPY(J.T,A(1,K-1),1,A(1,7).1)
70 CONTINUE A(J,K) = MULK
KSTEP = 2 A(J,K-1) = MULKM1

170 CONTINUE
180 CONTINUE
KPVI(K) = 1 - K
.NE. 0.0E0) GO TO 100 IF (SWAP) KPVT(K) = -IMAX
KPVT(K-1) = KPVT(K)
190 CONTINUE

SWAP = IMAX .KE. KM1

80 CONTINUE

90 CONTINUE
IF (AMAX1 (ABSAKK, COLMAX)
KPVT(K) = K

INFO = K
GO0 TO 190 K = K - KSTEP
100 CONTINUE GO TO 10

1F (KSTEP .EQ. 2) GO TO 140 200 CONTINUE

IF (.NOT.SWAP) GO TO 120 ::;URN

CALL SSHAP(IHAX,A(I,IHAX),I.A(I.K),1)

DO 110 JJ = IMAX, K ¢
J = K + IMAXK - JJ c
T = ALK SUBROUTINE SSIDI(A,LDA,N,KPVT,DET,INERT,WORK,JOB)
A(J.K) = A(IMAX,J) ¢
A(IMAX,J} = T c SSIDI COMPUTES THE DETERMINANT, INERTIA AND INVERSE OF A REAL
130 CONTINUE g SYMMETRIC MATRIX USING THE FACTORS FROM SSIFA.
CONTINU
120 ng"§§° 5; . 1. D0 INTEOER LDA,N,JOB
130 39 "3 REAL A(LDA,1) ,WORK(1) ,DET(2)
INTEGER KPVT{1),INERT(3)
- -A(T, K
:fonunxA(J K)/A(K,.K) REAL AKKP1,SDOT, TEMP
REAL TEN,D,T,AK,AKP1
,T,A(1,K),1,A(1,3),1 ,D,T,AK,
:?gnx?AEF:éixT 1K) (13747 INTEGER J,JB,K,KM1,KS, KSTEP
130 CONTANUE LOGICAL NOINV,NODET,NOERT
c
KPVT(K) = K
NOINV = MOD(JOB,10) .EQ. O
= IMAX
gg ;g"tzé KPVT(K) = I NODET = MOD(JOB,100)/10 .EQ. O
140 CONTINUE NOERT = MOD(JOB, 1000} /100 .EQ. [+]
IF (NODET .AND. NOERT) GO TO 140

IF (.WOT.SWAP) GO TO 160
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10

20

30
40
80

60

70

80
90

100
110
120
130
140

180

160

IF (MOERT) GO TO 10
INERT(1) = ¢
INERT(2) = ¢
INERT(3) = o
CONTINUE
IF (NODET) GO TO 20
DET(1) = 1.0E0
DET(2) = 0.0EO
TEN = 10.0E0
CONTINUE -
T = 0.0B0
DO 130 K = 1, N
D = A(K,K)
IF (KPVT(K) .GT. 0) GO TO 50
IF (T .NE. 0.0E0) GO TO 30
T = ABS(A(K,K+1))
D = (D/T)*A(K+1,K+1) - T
G0 TO 40
CONTINUE
D=rT
T = 0.0R0
CONTINUR
CONTINUE
IF (NOERT) GO TO 60
IF (D .GT. 0.0E0) INERT(1) = INERT(1) +1
IF (D .LT. 0.0E0) INERT(2) = INERT(2) +1
IF (D .EQ. 0.0E0) INERT(3) = INERT(3) +1
CONTINUE
IF (NODET) GO TO 120
DET(1) = D*DET(1)
IF (DET(1) .EQ. 0.0E0) GO TO 110
IF (ABS(DET(1)) .GE. 1.0E0) GO TO 80
DET(1) = TEN®DET(1)
DET(2) = DET(2) ~ 1.0E0
Qo0 TO 70
CONTINUE
IF(ABS(DET(1)) .LT. TEN) GO TO 100
DET(1) = DET(1)/TEN
DET(2) = DET(2) + 1.0E0
@G0 TO 90
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
IF (NOINV) GO TO 270
K=
IF (X .GT. N) GO TO 260
KMl =« X - 3
IF (KPVT(K) .LT. 0) GO TO 180
A(K,K) = 1.0EO0/A(K,K)
IF (KM1 .LT. 1) GO TO 170
CALL SCOPY(KHI.A(I,K),I,HORK,I)
DO 160 J=1, kM1
A{J,K) = SDOT(J,A(l,J),I,WORx,l)
CALL SAXPY(J-I,HORK(J),A(I,J),I,A(l.x).l)
CONTINUR
A{K K) = A(X,K) + SDOT(KHI,ﬂORK.l.A(I,K).1)

170

180

190

200
210
220

230
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CONTINUE
KSTEP = 1
G0 TO 220
CONTINUE
T = ABS(A(K,K+1))
AK =.A(K,K)/T
AKP1 = A(K+1,K+1)/T
AKKPY = A(K,K+1)/T
D = T*(AK®*AKP1 - 1.0E0)
A(K,K) = AKP1/D
A(K+1,K+1) = AK/D
A(K,K+1) = -AKKP1/D
IF (KM1 ,LT. 1) GO T0 210
CALL scopv(xnx.A(x.x+1).1,wonx.1)
DO 190 J =3, xM)
A(J . K+1) = SDOT(J,A(I.J),I,HORK,I)
CALL SAXPY(J-L,HORK(J),A(I,J).1,A(1,x+1),1)
CONTINUR )
A(K+1,K+1) = A(K+1,K+1) + snor(KN:.HORK.I.A(I.x+1).1)
A(K,K+1) = A{K,K+1) + SDOT(KHI,A(I.K),1,A(1,K+1),1)
CALL SCOPY(KHI,A(I,K),I,HORK,I)
DO 200 J = 1, XM -
A(J,K) = SDOT(J,A(l,J),l,HORK,l)
CALL SAxPY(J-x,NORx(J).A(I,J),I,A(I,K),l)
CONTINUE
A(K,K) = A(K,K) + SDOT(KMI.HORK.I,A(I.K).1)
CONTINUE
KSTEP = 2
CONTINUE
KS = IABS (KPVT(K))
IF (KS .EQ. K) GO TO 250
CALL sswAP(Ks,A(x.xs).I.A(I.K).1)
DO 230 JB = KS, X
J =K +KS -JB
TEMP = A(J,K)
A(J,K) = A(KS,J)
A(KS,J) = TEMP
CONTINUE
IF (KSTEP .ZQ. 1) GO TO 240
TEMP = A(KS,K+1)

-A(KS,K+1) = A(K,K+1)

A(K,K+1) = TEMP
CONTINUE
CONTINUE

K = X + KSTEP
GO TO 150
CONTINUE
CONTINUE
RETURN

END

SUBROUTINE SSHAP(N.SX,INCR,SY,INCY)
SSWAP INTERCHANGES TWO VECTORS

REAL SX(1),3Y(1),STEMP
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INTEGER I,INCX,INCY,IX,6IY M, MP1,N
IP(N .LE. O ) RETURN
M = MOD(N,3)
IF (M .BEQ. 0) GO TO 40
DO 30 I = 1 ,M
STEMP. = SX(I)
SX(1) = SY(I)
SY(I) = STEMP
CONTINUE
IF (N .LT. 3) RETURN
MP1 = M+l
po 50 I = MP1,NK.3
STEMP = SX(I)
sX(1) = SY(I)
SY(I) = STEMP
STEMP = SX(I + 1)
SX(I + 1) = SY(I + 1)
SY(I + 1) = STEMP
STEMP = SX{I + 2)
SX(I + 2) = SY(I + 2)
SY(I + 2) = STEMP
CONTINUE
RETURN
END

SUBROUTINE SAXPY (N,SA,SX,INCX,SY, INCY)

SAXPY COMPUTES THE OPERATION: CONSTANT TIMES A VECTOR

PLUS A VECTOR.

REAL SX(1),8Y(1).SA
INTEGER I.INCX,INCY,IX, XY ,M,MP1,N

1P (N.LE.O)RETURN

IF(SA .EQ. 0.0) RETURN

M=MOD(N, 4)

IP(M .EQ. O) GO TO 40

DO 30 I=1 .M
SY(I)=SY(I)+SA*SX(I)

CONTINUE

IF(¥ .LT. 4) RETURN

MPl=M+1

DO 50 I=MP1,N,¢
SY(I)=SY(I)+SA*SK(I)
SY(I+1)eSY{I+1)+SA®SK(I+1)
SY(X+2)-SY(I+2)¢SA'SX(I¢2)
SY(I+3)=8Y(1+3)+SA®SX(I+3)

CONTINUE

RETURN

END

REAL FUNCTION SDOT (N, SX, INCX, SY, INCY)

anca oo

o000 a0

20
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40

80
60

30

SDOT FORMS THE DOT PRODUCT OF TWO VECTORS

REAL SX(1),SY(1),STEMP
INTEGER I,INCX,INCY,IX,IY,M,MP1,N

STEMP=0.0EO

SDOT=0.0EO

IF(N .LE. O)RETURN

M=MOD(N, 5)

IF(M .EQ. 0) GO TO 40

DO 30 I=1,M
STEMP=STEMP+SX(I)*SY(I)

CONTINUE

IF(N .LT. 5) GO TO 60

MP1l=M+1

DO 50 I=MP1,N,5

STEHP-STEHP+SX(I)‘SY(I)*SX(I+1)‘SY(I+1)+SX(I+2)‘SY(I+2)+

. SX({I+3)*SY(I+3)+SX(I+4)*SY(I+4)
CONTINUE

SDOT=STEMP

RETURN

END

INTEGER FUNCTION ISAMAX(N,SX,INCX)

ISAMAX FINDS THE INDEX OF ELEMENT BAVING MAX. ABSOLUTE VALUE

REAL SX(1),SMAX
INTEGER I, INCX,IX.N

ISAMAX = 0

IF (N .LT. 1) RETURN

ISAMAX = 1

IF (N .EQ. 1) RETURN

SMAX = ABS(SX(1))

DO 30 I = 2,N
IF(ABS(SX(I)) .LE. SMAX) GO TO 30
ISAMAX = I
SMAX = ABS(SX(I))

CONTINUE

RETURN

END

SUBROUTINE SCOPY(N,SX, INCX,SY,INCY)
SCOPY COPIES A VECTOR X TO A VECTOR ¥

REAL SX(1),8Y(1)
INTEGER I, INCX,INCY,IX, IY,M,MP1,N

IF (N .LE. 0) RETURN
M = MOD(N,7)
IF(M .EQ. O0) GO TO 40
DO 30 I=i .M

SY(I) = $X(I)
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30 CONTINUER
IF(N .LT. 7) RETURN
40 MP1 = M43
DO 80 I = MP1,N,7
SY(I)=SX(1)
SY(I+1)-8X(I+1)
SY(I+2)-SX(I+2)
SY(I+3)msX(1+3)
SY(I+4)=SX(I+4)
SY(I+8)=SX(1+5)
SY(1I+8)=SX(I1+6)
50 CONTINUE
RETURN
END

REAL FUNCTION SASUM(N, SX, INCX)
SASUM TAKES THE SuM OF THE ABSOLUTE VALUES.

REAL SX(1),STEMP
INTEGER I,INCX,M,MP1,N,NINCX

SASUM=0.0E0
STEMP=0.0E0
IF(N .LE. 0) RETURN
20 M=MOD(N, 6)
IF(M .BQ. 0) GO 1O 40
DO 30 1a1,M
3TBMP-STEMP+ABS(SX(I))
30 CONTINUE
IF(N .LT. 6) Go TO 60
40 MP1=M+)
DO 50 1=MP1,N,6
ST!HP-STEHP+ABS(SX(I))+ABS(SX(I+1))#ABS(SX(I+2))#
. ABS(SX(Iﬁs))+ABS(SX(I+C))+ABS(SX(I+5))
50 CONTINUE
60 SASUM=STEMP
RETURN
END

SUBROUTINE SSCAL(N,SA,SX.INCX)
SSCAL SCALES A VECTOR BY A CONSTANT.

REAL SA,SX(1)
INTEGER I,INCX,M,MP1,N, NINCK

IF(N .LE. 0) RETURN
20 M=MOD(N, 8)

"IF(M .EQ. 0) GO TO 40

DO 30 I=1,M

SX(I)=SA*SX(I)

30 CONTINUE

IF(N .LT. &) RETURN
40 MP1apMe+]

DO 30 1a=mPi,N,s
SX(I)=SA*SX(1)
SX(I+X)-SA‘SX(I+1)
SX(I+2)-SA‘SX(I+2)
SX(I+3)-SA‘SX(I$3)
SX(I+4)-SA‘SX(I+6)

80 CONTINUE

RETURN

END



Test Problem 1

Ci1\MATXTST>

C:\MATXTST>

C:\MATXTSTO>MATXTET R .

DATA INPUT: File name missing or blank ~ Please enter name

UNIT 37 C:\MATXTST\MATXTST.INP
THIS MATRIX 1§ POSITIVE DEFINITE
DET= .879280E-06
Do you want to save the inverse matrix?Y/N
N
HAXARRXHMX  INVERSE MATRIX  XXXXAXRXXX
JA141991E+04
- . 454736E+03 .946593E+03
Stop - Program terminated.

C:\MATXTST MATXTST1
DATA INPUT: File name missing or blank - Please snter nase

UNIT 37 C:\MATXTST\MATXTST.INP
RCOND= ,342802E+00
Do you want to save the inverse matrix?Y/N
N .
HRXRXHAANKRX INVERSE MATRIX suxxxxANMN
<141991E+04
=~ 454736E+03 ,F4ESIIE+O3
DET= .B879280E-0&6
xuxxx INERTIA=Number of Eigenvalues xxxxx
Positive= 2 Negatives O 2ero= 0
This matrix is Positive Definite
8top ~ Program terminated.

C:\MATXTST>TYPE MATXTST.INP
2
e
11
0.00083232
0.00039984 0.00126483

Test Problem 2

C1\MATXTST>
C:\MATXTST>MATXTST
DATA INPUT: File name missing or blank ~ Please enter name

UNIT 37 Ci\MATXTST\MATXTST. INP
ewe I veesnes T ennensa CUIsT) oo
3 -1 2.500000
This matrix is unreal because the correlation coefficients above are higher than
1
Stop - Program terminated.

Ci:\MATXTST>MATXTSTY
DATA INPUT: File name missing or blank - Please enter name

UNIT 37 C:\MATXTST\MATXTST.INP
eee I teeenes T snnieae B(1,T) ot
3 1 £2.500000
This matrix is unreal because the correlation coefficisnts above are higher than
1
Stop - Program terminated.

Ci\MATXTST>TYPE MATXTST.INP

3 .
e
11
2.0
1.0 3.0
S.0 2.0 2.0
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Test Problem 3

Ci1\MATXTSTOMATXTST
DATA INPUT: File name missing or blank - Please enter name

UNIT 3?7 C:\MATXTST\MATXTST. INP
THIS MATRIX IS NOT POSITIVE DEFINITE

VERIFY THE FOLLOWING MATRIX LINE:

LINE I= &4
-980000E-01 .2542B0E+00 ,990000E-01 .100000E+01

Do you want to test all the cross correlations inside this leading principal ain

or?Y/N

Y

Test of the cross correlation consistency

This cross correlation is not positive definite.

The correspondent parameters are: 1 2 4

All 3x3 principal minors were tested

Stop -~ Program terminated.

C1\MATXTSTOMATXTST 1
DATA INPUT: File name missing or blank - Pleass snter namse

UNIT 37 C:\MATXTST\MATXTST.INP
RCOND= ., 132216E-02
Do you want to save the inverse satrix?Y/N
N
HRURNKANNXN INVERSE MATRIX 2905000200202 X
~.B8084684E+02
- .59084SE+02~, 1 33759E+01
=.293325E+01-,341399E-01 «B83546E+0)
+834041E+02 .413B83E+01 .137344E-01~,BB8SS04E+O1
=+691406E+00~,8034655SE-02~, 3B0SO8E-03 .3187B9E~OR .44BE4YOE+00
=« 3T9202E+00-.41778BE~02-,214484E-03 .156807%-0R~. 392230E-04 + 174800E+00
DET= -,13208SE-02
xxxxx INERTIA=Number of Eigenvalues »xxxxx
Positive= 3% Negative= | 2ero= O
This matrix is Indefinite
Stop - Program terminated.

Ci\MATXTST>TYPE C: \MATXTST\MATXTST. INP

[-)
1
11
0.10 0.30 0.40 1.0 1.3 2.4
1.0
0.2475 1.0
0.1650 0.0416 1.0
0.9800 0.8475 0.1630 1.0
0.0990 0.0230 0.0164 0.0990 1.0
0.0825 0.0208 0.0139 0.08235 0.0083 1.0
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Test Problem 4

MATXTST
DATA INPUT: File name missing or blank - Please enter name

UNIT 37 C:\MATXTST\MATXTST. INP
THIS MATRIX 1S POSITIVE DEFINITE
DET= .149169E-03
Do you want to save tha inverse matrix?Y/N
N

XuxxxxXA%K  INVERSE MATRIX  ®UXXNNNXXN

-252806E+04
= 443971E+01 .11B440E+02
=+142717E+01~,213098E-02 .285433E+01
—.2#71945*03-.4439715+OO—.142717E+Og .g:igg?i:g? “4BBEIE+00
- .336370E+00~.59B013E-03-,115278E~03~. .
=+174451E+00~.260780E-03~, 107803E~03-, 1 74650E-01-. 14107RE-04 .174813E+00
Stop - Program terminated.

Ci1\MATXTST>MATXTSTL
DATA INPUT: File name missing or blank -~ Flease enter name

UNIT 3? Ci\MATXTST\MATXTST. INP

RCOND=  , £49482E-04
Do you want to save the inverse satrix?Y/N
N

AMNRXARNNN INVERSE MATRIX wxxxxxumuxn
«252806E+04
=+ 443970E+01 ,11B440E+08
=+.142717E+01~.213099E-02 ,.R83633E+01
=« 847195E+03~,443972E+00~.142717E+00 .252006E+0R
=+.336370E+00-.59801 1E-03-, 115278E~03~.33636FE~01 .44IVBBE+00
=« 1744652E+00—- . 2460781 E-03-. 107803E-03-,17465S0E~01-.1411276+-06¢ .174813E+00
DET= ,3149169E-03
xxxxx INERTIA=Number of Eigenvalues xxxxx
Positive= & Negative= O Zero= 0O
This matrix is Positive Definite
8top - Program terminated.

CI\MATXTST>TYPE MATXTST.INP

6
1
11
0.10 0.30 0.60 1.0 1.5 2.4
1.0
0.247% 1.0
0.16%0 0.0416 1.0
0.9800 0.2475 0.1450 1.0
0.0990 0.085%50 0.0166 0.0990 1.0
o0.o8e% 0.08208 0.0139 0.00RS 0.0083 1.0
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