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Abstract

Argonne National Laboratory is providing support for a criticality safety analysis
project that is being performed at Oak Ridge National Laboratory. The ANL role is to
provide the covariance information needed by ORNL for this project. The ENDF/B-V
evaluation is being used for this particular criticality analysis. In this evaluation,
covariance information for several isotopes or elements of interest to this analysis is
either not given or needs to be reconsidered. For some required materials, covariance
information does not exist in ENDF/B-V: 32U, #°U, zr, Mg, Gd, and Hf. For others,
existing covariance information may need to be re-examined in light of the newer
ENDF/B-VI evaluation and recent experimental data. In this category are the following
materids. U, ?*U, *°Py, **Pu, *'Pu, Fe, H, C, N, O, Al, Si, and B. A reasonable
estimation of the fractional errors for various evaluated neutron cross sections from
ENDF/B-V can be based on the comparisons between the magjor more recent evaluations
including ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2, as wdl as a careful
examination of experimental data. A reasonable method to construct correlation matrices
is proposed here. Coupling both of these considerations suggests a method to construct
covariances filesin ENDF/B format that can be used to express uncertainties for specific
ENDF/B-V cross sections.



l. I ntroduction

The information on different types of cross sections, resonance parameters and
other quantities of interest in the ENDF (Evaluated Nuclear Data File)* is based on the
analysis of a variety of measurements as well as on applicable nuclear models. Since the
discrepancies between different measurements can be significant and the nuclear models
employed are far from being perfect, an interest in covariance information in the ENDF
system has developed in recent years. A number of reasons can be advanced to support
the notion that such information is often crucial in nuclear data applications.

The construction of covariance information finds its origins at the experimental
analysis stage. An experimenter is obliged to provide the most complete information
possible on error components related to a particular experiment. Having that information,
an evaluator can estimate the degree of “uncertainty” to be assigned to this measurement
and others as well in order to provide that information to the usersin form of covariance
filesin ENDF/B format.

Unfortunately, the covariance information in the recent evaluations, such as
ENDF/B-V, ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2, is either not complete or
is absent for a big variety of materials. The only rigorous way to provide that information
isto perform a new evaluation incorporating covariance methodol ogy.

Nevertheless, a different, less expensive solution is proposed here which does not
require a new evaluation. This solution is based on the idea of considering the covariance
information as a measure of confidence in one particular evaluation with respect to the
othersthat are available.

A reasonable estimation of the fractional errors for different neutron cross
sections in ENDF/B-V can be based on comparisons between the major existing recent
evaluations including ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2, as well as a
careful examination of pertinent experimenta data. A reasonable algorithm for
constructing correlation matrices, which is based on this assumption, is proposed. This
approach allows the possibility for constructing covariance files in ENDF/B format for a
set of selected materials.



II. Covariance Matrices

We discuss here general features of methods used for the construction of a
covariance matrix. We follow the approach proposed in the reference 2.

A covariance matrix Vx represents error information for all possible pairs of
components X; and X; of a vector X of dimension n. It is derived from a multivariate
probability distribution function p(X) as follows:

(Vi) = cov(X;, X)) =(dX, dX;) = (X, X} - (X, )}(X), ()

where dX; =X, - (X;) and ( ) mean that an average is to be taken with respect to p(X).

It is clear that if i=j, then the ement (VX )ii simply reflects a variance (standard deviation
squared) for the quantity X; :

cov(X,,X,) =var(X,) = [stddev(X  JJ* = ((dx )2) = (x2)- (X,)’. )

Such quantities are commonly used to describe the propagation of errors through
the well-known linear Law of Error Propagation (LEP). Let us consider a vector Y (X) of
dimension m that is a function of the vector X. This vector has components Y. Linear
LEP suggests that Y is alinear combination of all X;. Nevertheless this approach can be
generalized provided that the following conditions are satisfied: @) Y varies smoothly
over all the region of the most probable X; b) the function p(X) is localized in the vicinity

of (X}, and ¢) Y is differentiable with respect to each X; near (X). In this case Y can be
approximated by afirst order Taylor seriesin the vicinity of (X) asfollows:

j=Ln

Y, =Y, (x)+ & ?ﬂ;kg dX . 3)
VBe=ix)

Introducing the notation t,, = (‘ﬂYk /‘ﬂXj)x:<X and (Y, ) » Yk(<X>) we obtain:

)

Y, =(Y,)+a t,dX,, (4)

j=Ln
dYk:Yk' <Yk>:é tjkdxj' (5)
j=Ln

The matrix T, whose components are tj, is called the sengitivity matrix. In terms of this
matrix we can rewrite the preceding formulain its matrix form:



dy =T*dX. (6)
From the several preceding formulasit is then easily seen that:

cov(Y,,Y,) = é é tu ty cov(X;,X;). (7)

i=Ln j=1,n

The last expression makes a connection between the m”™ m covariance matrix Vy for Y
(with components (dY, dY,)), and the n" n covariance matrix Vx for X (with
components as defined in (1)) through the matrix T:

V, =TV, T. 8

In terms of a correlation matrix C, the reative covariance matrix R is defined by the
expression:

R =—" =Cff 9

where f, and f;are fractional errors of the quantities X; and X;. For convenience we
drop the subscript “X” for R, C, and f.

Covariance information in ENDF/B format can be found in file MF=33 and is
provided for different types of reactions identified by MT if any error information exists.*
“Cross’ covariances, i.e., cross covariances for different types of reactions or different
isotopes may also be provided. Cross covariance information for different isotopes is
important in the case where cross sections were deduced from the analysis of ratios of
different cross sections. The fission cross section of 2*®U is an example. Two different
flags NC and NI are assigned for such cases. When using NC, the covariances are
described indirectly using different values of the flag LTY. To calculate covariances for a
particular cross section, a summation has to be performed over all sub-subsections.
Different coding methods for covariances in ENDF/B format are used. That is reflected
by a LB value. We will not enter into the details of these formats and refer the reader to
the manual on ENDF/B formats for details.

Here we consider individual isotopes and reactions. “Cross’ covariances are
therefore ignored. We always use the flag NI for the sake of its simplicity. The issue
concerning the use of different covariance formats (reflected by LB value) is still under
discussion. The nuclear data community seems now to be agreed that the ssimplest and the
most understandable to a user LB format must be used.® From the existing options for
coding covariances in ENDF files, the most convenient form, in our opinion, is LB=5.
This coding corresponds to the formulae (9). Different factors in this formula need to be
addressed in order to carry out the covariance generation process. Below, we describe the
methods employed to calculate the different factorsin (9).

10



[I1. A Method to Provide Fractional Errors

How can we get information about fractional errors f(R, A, €) for a particular
reaction R, a particular isotope A and a particular evaluation e without carrying out a
complete reevaluation procedure? Let us first look at these errors as measure of the
degree of confidence that we actually assign to one particular value of one particular
cross section. Due to differences in available experimental data and to the difference in
the employed methods, cross sections never exhibit the same values for different
evaluations (except the trivial cases where one evaluation is a perfect copy of another).
Hence, we can begin our analysis by processing different evaluations at temperature of
zero degree Kelvin and an infinite dilution cross section for a particular pair (R, A) with a
processing code, such as NJOY.* The scatter between these processed cross sections for
different evaluations e with respect to the evaluation e of present interest (in our case
ENDF/B-V) appears to be a reasonable way to estimate those fractional errors for a
particular triplet (R, A, €). The maximum discrepancy between these evaluations g and e
isthe fractional error we chose to select:

_ és(R,Ae)- s(R,Ag)u
f(R,Ae) = miaxg S(RA0) H (10)

Obvioudly, the evaluations, which differ from E by more than 100%, should not
be taken into account unless there is strong experimental evidence available to suppose
such a large difference. Minimal fractional errors are also imposed in those cases where
only very dlight changes were found from one evaluation to another.

Since by definition we are interested in providing covariance information for
ENDF/B-V, we should compare it for the different types of cross sections processed with
all other available evaluations.

We describe here several special cases of interest, which must be treated
separately when calculating fractional errors.

a) Discrepancies between ENDF/B-V and all other evaluations are smaller than
the following values. Fisson 1%, Capture 5%, Elastic 10%, Inelastic 10%,
Nu-bar 1%. In this case we impose those values as the magnitude of fractional
errors.

b) Discrepancies between ENDF/B-V and all other evaluations are bigger than
100%. In this case we impose a conservative fractional error of 70% for each
type of reaction.

c) Discrepancy between ENDF/B-V and at least one evaluation (may be many)
is smaller than 100% and the others evaluations differ by more than 100%: In
this case we do not take into account those latter evaluations and base our
estimation of fractional errors only on the rest of the evaluations.

Since the present interest is in providing covariance files for criticality safety
applications, an appropriate energy group structure should be used.

11



V. A Method to Construct Correlation M atrices

The relative covariance matrix R;; for the two arbitrary points in energy group
structures E; and E; isgiven by the expression:

R, =C;f, f, (11)

[/

where f, and f; are the estimated fractional errors of the particular cross section in the
groupsi and j, and C; isthe correlation matrix which satisfies - 1£ C; £1. The energies
E; and E; can be selected for convenience as the midpoaint energies of thei™ and ™ energy
groups.

Since we do not enter into details of each particular measurement, the correlation
matrix must be reasonably estimated. The principal of construction of the C; “apriori” is

based on the concept of long-, medium- and pair-wise-range correlations. First we
assumethat C; isaproduct of three factors:

Gy =Ly My S, (12)

where L;, M;; and S; stand for long-, medium- and pair-wise correlations. L; becomes
influential if the points in energy are far from each other. In all cases O£L; £1. M,

takes into account “ medium” correlation effects such as correlation between the thermal
(LUv), resonance, and fast regions. Similarly, O£M; £1. Findly, S; accounts for
correlations between two arbitrary E; and E; based on analysis of pair-wise variations,
regardless of separation in energy or other physical considerations. The inequality
- 1£S,; £1 holdsfor pair-wise correlations. Let us consider in greater detail each factor.

Long-range correlation

We make an ad hoc assumption that:

1ol Bl
€

L. =

ij

(13)

where € isthetotal energy interval of interest (energy range spanned by the evaluations,
e g. 20 MeV). Obvioudly, O£ L; £1. It is seen that the last expression is the first order

term in a Taylor’'s series for the exponential function. Hence, another approach to model
L. can be:
ij

12



E-E|3

(14)

&
L; =exp%- a
e

where a is a positive dumping factor which determine the strength of the long-range
correlation. Nominally, we estimate a =1 to 2. In our calculation we use the expression
(14) with a=1.5.

Medium-range correlation

The concept of the medium—range correlation in the case of neutron cross sections
arises from the fact that there are three distinct regions of energy to consider: Thermal
(1/v), Resonant and Fast (values due to the unresolved levels) energies. The example of
the “**U total cross section (Figure 1) illustrates that fact.

These three regions are generaly treated differently in the evaluation process.
Hence, while there are common factors between the regions that introduce correlations,
these correlations can never be as strong as unity. Roughly these three regions are:

Thermal, based strongly on the 1/v shape normalized to measured thermal cross section
value;

Resonant, which fits experimental data with different approximation of R-matrix
formalism (such as Breit-Wigner multilevel or Reich-Moore formalisms);

Fast, smooth region based on afit to average experimental data.

Eth Era

Thermal (1/v) Resonant Fast

Fission onoss section. ham

le:f fesd 13 122 Tl e+l letl fe+Z 1e+d lesd feth ledd lesT

E, a¥

Figure 1: Total cross section of *°U.
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Therefore, the following gross correlation matrix representing medium range correlations
is suggested (Figure 2).

Thermal 1
Resonant b 1
Fest X g 1
Thermal (1/v) Resonant Fast

Figure 2: Medium range corrdationsin three distinct regions in energy.

The introduced quantities b, x, and g satisfy O<b, x, g<1. The values of these

guantities must be estimated. The thermal cross sections near the resonant region are
strongly influenced by the tails of the low-lying resonances, so it is reasonable to assume
that the value of b isquite high:

b » 0.75- 0.9 (rather strong correlation).

The resonant and fast regions are evaluated differently but the unresolved-
resonance region (included in the fast part) imposes a moderate correlation such as

g » 0.5 (moderate correlation).

Finally the thermal and fast regions tend to be rather decoupled, so we assume that
x » 0.25 (weak correlation).

The decomposition of the total energy interval € into Thermal, Resonant and Fast
regions (the values of Ey and E.) IS isotope dependant and must be examined
individually for each particular isotope.

Pair-wise correlation

The pair-wise correlation factor S; tests for similarity of the error magnitudes f,
and f; regardless of al other considerations. For this particular correlation component we
assume somewhat conservatively that:

14



1 afit o

NW (i), (15)
N f, J

1 (i=1))

S, =

) m—" — —] —

In the last formula the following notation is introduced:

£, 1] - fractional errors for the evaluation n and energies E; and E;;
e, £ - maximal fractional errorsin the energy groupsi and j;
N - number of the evaluations taken into account.

Keeping the sign of f; and f;, we can also account for anti-correlation. This

approach to correlation estimation technique can be justified as follows: If the errors f,
and f; are very different from each other then S; will be small, if they are close then S
will be bigger. The fact that f, and f; may be situated at a long distance in energy from
each other will be taken into account through the factors L; and M. Obviously,
- 1£S; £1. Thelimiting cases of pair-wise tota correlation S;=1 will occur if for each
fe
tempting to refer to this type of correlations as short-range since it involves only pairs.

However, use of this expression to characterize the correlation could be misleading since
Ei and E; could be very different.

n

:‘ fymax‘, where x and y stand for all possible combinations of i and j. It is

In summary, the strength of correlation or anti-correlation implied by S; is

determined by an assumed common error component which amounts to the average
fractional error over al evaluations. It is clear that this approach is ad hoc. The values f."

and f might be similarly small or large for totally different reasons. However, in the

absence of other evidence, this approach seems rational. As was mentioned above, the
factors L; and M; come into play to temper the correlation strength based on other

considerations such as energy and region.

15



V. Calculation Scheme

In this section we describe how our calculations were arranged and performed
(Figure 3). Several computer programs were written to perform the necessary operations.
Programs gendfDC and pendfDC helped us to retrieve the information on point- and
group-wise cross sections from the NJOY output files. The routine covDD assembles
results from all previous calculations, constructs a covariance matrix for given isotope,
and creates the file for MF=33 in ENDF/B LB=5 format for the reactions specified by the

user. The routine graDD performs some transformations necessary for plotting of the
results.

Evaluation e for isotope A and reaction R for
ENDF/B-V, ENDF/B-VI, JENDL 3.2, BROND2.2, JEF2.2

l NJOYME, UNIX shell

|| NJOY processing of triplets (e, A, R) ||

gendfDC and pendfDC

|| Group- and point-wise cross sections from NJOY output ||

CovDD GraDD
Constructs covariance filesin Calculate different
ENDF LB=5 for mat quantities for plots

Figure 3: Calculation scheme.
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VI. [lllustration of the M ethods

Let us illustrate the methods described in sections 111 and 1V. We consider here
the fission cross section of “*U. First, we processed the files for this isotope with all the
available evaluations (ENDF/B-V, ENDF/B-VI, JENDL3.2, BROND2.2, and JEF2.2).
The result is plotted in Figure 4. Then we calculated the difference between the fission
cross section processed with ENDF/B-V and all other evaluations. The result is shown in
Figure 5. Looking for discrepancies over 100% and smaller than a reasonable value for
fisson (which is of order of 1%), and taking into account only those eval uations, which
satisfy this criterion, we obtained fractional errors including signs for this particular
reaction ( Figure 6). All these figures were generated with the help of the graDD routine.
The associated correlation matrix, calculated as described in the section 1V, is presented
on the Figure 7 (planar view) and Figure 8 (3D view).

The covariance matrix obtained in this manner was processed with the code
NJOY. The results, which summarizes the correlation matrix and the fractional errors,
are presented in the Figure 9. In the Figure 10 we show the same information as in the
Figure 9 but thistime the covariance file, provided with ENDF/B-V evaluation, was used.
Note that the covariance information available in ENDF/B-V is minimal. It is for this
reason that the present project was initiated. Note that the plotting routine of NJOY uses
zero values of correlationsisthe latter are small.

In al our calculations we employed the 44-group structure currently being used in
criticality safety applications. This group structure's energy boundaries are presented in
Table 1.

17



Group index Energy, eV Group index Energy, eV Group index Energy, eV
1 1.0000e-5 16 3.0000e-3 31 7.5000e-3
2 1.0000e-2 17 2.5300e-2 32 3.0000e-2
3 4.0000e-2 18 5.0000e-2 33 7.0000e-2
4 1.0000e-1 19 1.5000e-1 34 2.0000e-1
5 2.2500e-1 20 2.5000e-1 35 2.7500e-1
6 3.2500e-1 21 3.5000e-1 36 3.7500e-1
7 4.0000e-1 22 6.2500e-1 37 1.0000e+0
8 1.7700e+0 23 3.0000e+0 38 4.7500e+0
9 6.0000e+0 24 8.1000e+0 39 1.0000et+1

10 3.0000e+1 25 1.0000e+2 40 5.5000e+2
11 3.0000e+3 26 1.7000e+4 41 2.5000e+4
12 1.0000et+5 27 4.0000et+5 42 9.0000e+5
13 1.4000e+6 28 1.8500e+6 43 2.3540e+6
14 2.4790et+6 29 3.0000e+6 44 4.8000et+6
15 6.4340et+6 30 8.1873et+6 45 2.0000et+7

Table 1. Group boundaries for 44-group structure being used in criticality safety
applications.

18
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Figure 4: Fission cross section of %2U%®

safety applications.

in 44-group structure used in criticality
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Diffrence in fission cross section ENDE/B-V-EVAL

ENDF/EB-V

0.1

3
e R, L | ——
0.0 H n r"'-. e I L I-I|j _| I_I_ 'l I i
r L P
0.1 4 S |
0.2 - - o
i
o —— ENDF/B-VI |
U s JIEFDID
JENDL3.2
el —  BROND2.2
0.5 4
-06 T T T T T T I T T

1e-5 1e-4 1e-3 1e-2 1e-1 1e+0 1e+1 1e+2 1e+3 le+4 1e+5 le+6 1e+?y

E (eV)

Figure 5: Comparison of the fission cross section of *U?** for different evaluations.
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Fractional errors
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Figure 6: Fractional errors on the fission cross section of *U%*° for ENDF/B-V.
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Figure 7: Corrdation matrix C;; for %2U?* fission (planar view).
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Figure 8: Corrdation matrix C;; for ““U?* fission (3D view).
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Figure 9: Result of generated covariance file for *U%* fission cross section processed
with the code NJOY .
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Figure 10: Result of generated covariance file for “U** fission cross section processed

with the code NJOY.
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VIl. Resultsfor different isotopes

We summarize in Appendix A our results for various isotopes. The plots are given
as generated with the code NJOY. Notice that the NJOY plot routine often does not
display the small quantities.

In Appendix B, the comparisons between new, generated with covDD routine
covariances and covariances provided in ENDF/B-V for U?* are presented.

We aso notice that the method used to construct covariance files, as described in
sections 111 and 1V, can be applied to any isotopes. We restrict ourselves to displaying
only those isotopes of particular interest to the criticality safety applications.

The numerical information used to produce the plots shown in Appendix A can be
obtained from Dimitri G. Nabergnev en request.
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VIII. Conclusion

A method to construct covariance files in ENDF/B format is described. This
method, being based on a reasonable estimation of fractional errors and ad hoc
construction of the correlation matrices, alows one to perform an estimation of
covariance matrices without performing a new evaluation. Covariance files for severa
isotopes of interest in criticality safety applications were created.

27



Acknowledgement

This work was supported by the U. S. Departement of Energy under Contract W-
31-109-Eng-138.

Dimitri G. Naberginev would like to express his gratitude to Dr. Claude Mounier,
CEA de Saclay, France, for his help in writing the routines pendfDC and gendDC.

28



Refer ences

! R Kinsey, ENDF-102 Data Formats and Procedures for the Nuclear Data File, ENDF,
BNL-NCS-50496, second edition, National Nuclear Data Center, Brookhaven national
Laboratory, Upton, New York (1979).

2 Donald. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear Science
and Technology, OECD/NEA Monograph Series, American Nuclear Society, La
Grange Park, Illinois (1991).

3 International Workshop on Covariance Matrices, April 21-23, BNL, USA

* R. E. MacFarlane and D. W. Muir, NJOY Nuclear Processing System, Version 91,
LA-12740-M, Los Alamos national Laboratory, Los Alamos, New Mexico (1994).

29



Appendix A
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Figure 11: Elastic cross section of %U?*,
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Figure 12: Inelastic cross section of

92; 1233
u=.




Adala vs. E for mgU(n,f:ﬁ

3
Linear Axes:
2H B Rel Standard Dev. (%)
] i =
Logarithmic Axas
10 S
Energy (e¥]
5— -
T S R S e s e g
0 10 10 11 10 10 EogEE A =R A
b= I I | I E’
% &
= - €
w
5- - m
- —
&
— ==y
g ba
o - 7
- |
= — 3
=
%— —
= =
|
" e =
i T T T T

Correlation Matrix

1 -1
0a -0a
0.f -0 6
0.4 -04
0.2 -0.2

0 0

Figure 13: Fission cross section of 2U%%,
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Aviv vs. E for “7U(total v)
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Figure 15: Total i for “2U%2.
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Figure 16: Elastic section of %U%*®,
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Figure 18: Fission cross section of “U~™.
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D7 Ey=l.et3 eV, B 1.64+6 €V.
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Figure 21: Elastic cross section of “°Zr.
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Figure 23: Capture cross section of “°zr.
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Mg: En=2.e+3 6V, Ers Le+7 V.
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Figure 24: Elastic cross section of **Mg.
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Figure 25: Inelastic cross section of **Mg.
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Figure 26: Capture cross section of **Mg.




2Hf: Ey=1 eV, E,e Let4 eV.
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Figure 27: Elastic cross section of "Hf.
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Figure 28: Inelastic cross section of "Hf.
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Figure 29: Capture cross section of "2Hf.
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Appendix B
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Figure 30: Elastic cross section of “U%*. Results with covDD.

En=4 eV, Ei 2.5et5 eV. Results for new generated covariances with covDD.
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Figure 31: Indastic cross section of “U**, Results with covDD.
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Figure 32: Fission cross section of “U%*. Results with covDD.
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Figure 33: Capture cross section of U%*. Results with covDD.
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Aviv vs. E for ““"U(total v)
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Figure 34: Total i for 2U%*. Results with covDD.
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2% Results with covariances provided in ENDF/B-V.
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Figure 35: Fission cross section of *U%*. Results with covariances provided in ENDF/B-V.
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Figure 36: Fission cross section of *U%*. Results with covariances provided in ENDF/B-V.
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